Electricity Price and Load Short-Term Forecasting Using Artificial Neural Networks

被引:3
|
作者
Mandal, Paras [1 ]
Senjyu, Tomonobu [1 ]
Urasaki, Naomitsu [1 ]
Funabashi, Toshihisa [2 ]
机构
[1] Univ Ryukyus, Nishihara, Okinawa, Japan
[2] Meidensha Corp, Tokyo, Japan
关键词
electricity market; neural networks; short-term price and load forecasting; similarity technique;
D O I
10.2202/1553-779X.1360
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an approach for short-term electricity price and load forecasting using the artificial neural network (ANN) computing technique. The described approach uses the three layered ANN paradigm with back-propagation. The publicly available data, acquired from the deregulated Victorian power system, was used for training and testing the ANN. The ANN approach based on similarity technique has been proposed according to which the load and price curves are forecasted by using the information of the days being similar to that of the forecast day. A Euclidean norm with weighted factors is used for the selection of similar days. Two different ANN models, one for load forecasting and another for price forecasting, have been proposed. Test results show that average price and load MAPEs for the year 2003 by using the ANN approach are obtained as 14.29% and 0.95%, respectively. MAPE values obtained from the price and load forecasting results confirm considerable value of the ANN based approach in forecasting shortterm electricity prices and loads.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [21] Artificial neural networks for short-term load forecasting in microgrids environment
    Hernandez, Luis
    Baladron, Carlos
    Aguiar, Javier M.
    Carro, Belen
    Sanchez-Esguevillas, Antonio
    Lloret, Jaime
    ENERGY, 2014, 75 : 252 - 264
  • [22] Middle anatolian region short-term load forecasting using artificial neural networks
    Demiroren, A
    Ceylan, G
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2006, 34 (06) : 707 - 724
  • [23] Short-term load forecasting in an autonomous power system using artificial neural networks
    Kiartzis, SJ
    Zoumas, CE
    Theocharis, JB
    Bakirtzis, AG
    Petridis, V
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (04) : 1591 - 1596
  • [24] Short-Term Load Forecasting using Artificial Neural Networks and Multiple Linear Regression
    Govender, Sahil
    Folly, Komla A.
    2019 IEEE PES/IAS POWERAFRICA, 2019, : 273 - 278
  • [25] Electricity price forecasting using artificial neural networks
    Singhal, Deepak
    Swarup, K. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (03) : 550 - 555
  • [26] Electricity price forecasting using artificial neural networks
    Villada, Fernando
    Cadavid, Diego Raul
    Molina, Juan David
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2008, (44): : 111 - 118
  • [27] Short-Term Load Forecasting Using Generalized Regression and Probabilistic Neural Networks in the Electricity Market
    Tripathi, M.M.
    Upadhyay, K.G.
    Singh, S.N.
    Electricity Journal, 2008, 21 (09): : 24 - 34
  • [28] SHORT-TERM LOAD FORECASTING USING FUZZY NEURAL NETWORKS
    BAKIRTZIS, AG
    THEOCHARIS, JB
    KIARTZIS, SJ
    SATSIOS, KJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (03) : 1518 - 1524
  • [29] Short-term electric load forecasting using neural networks
    Ramezani, M
    Falaghi, H
    Haghifam, MR
    Shahryari, GA
    Eurocon 2005: The International Conference on Computer as a Tool, Vol 1 and 2 , Proceedings, 2005, : 1525 - 1528
  • [30] Short-term load forecasting using dynamic neural networks
    Chogumaira, Evans N.
    Hiyama, Takashi
    Elbaset, Adel A.
    2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,