BRICK TABLOIDS AND THE CONNECTION MATRICES BETWEEN BASES OF SYMMETRICAL FUNCTIONS

被引:30
作者
EGECIOGLU, O [1 ]
REMMEL, JB [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
基金
美国国家科学基金会;
关键词
D O I
10.1016/0166-218X(91)90081-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H(n) denote the space of symmetric functions, homogeneous of degree n. In this paper we introduce a new set of combinatorial objects called lambda-brick tabloids and its variants, which we use to give combinatorial interpretations of the entries for twelve of the transition matrices between natural bases of H(n). Using these interpretations, it is possible to give purely combinatorial proofs of various identities between these connection matrices. Also as a consequence, the so called forgotten basis of Doubilet and Rota is shown to admit a natural combinatorial description in terms of brick tabloids and the monomial symmetric functions.
引用
收藏
页码:107 / 120
页数:14
相关论文
共 15 条
  • [1] DOUBILET P, 1972, STUD APPL MATH, V5, P51
  • [2] EGECIOGLU O, 1990, J COMB THEORY A, V54, P272
  • [3] EGECIOGLU O, UNPUB COMBINATORICS
  • [4] Egecioglu O., 1990, LINEAR MULTILINEAR A, V26, P59
  • [5] EGECIOGLU ON, 1984, THESIS U CALIFORNIA
  • [6] Macdonald I.G., 1979, SYMMETRIC FUNCTIONS
  • [7] Young A, 1934, P LOND MATH SOC, V37, P441
  • [8] Young A, 1901, P LOND MATH SOC, V33, P97
  • [9] Young A, 1928, P LOND MATH SOC, V28, P255
  • [10] Young A, 1932, P LOND MATH SOC, V34, P196