On the Decomposition of Hilbert Spaces

被引:0
作者
Afshin, H. R. [1 ]
Ranjbar, M. A. [1 ]
机构
[1] Vali E Asr Univ, Dept Math, Rafsanjan, Iran
来源
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS | 2011年 / 6卷 / 02期
关键词
Numerical range; Davis-Wielandt shell; Spectra; Conjugate of an operator;
D O I
10.7508/ijmsi.2011.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A basic relation between numerical range and Davis-Wielandt shell of an operator A acting on a Hilbert space with orthonormal basis xi = {ei|i is an element of I} and its conjugate (A) over bar which is introduced in this paper are obtained. The results are used to study the relation between point spectrum, approximate spectrum and residual spectrum of A and A ((A) over bar A necessary and sufficient condition for A to be self-conjugate (A = (A) over bar) is given using a subgroup of H.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 9 条
[1]  
DAVIS C, 1970, ACTA SCI MATH, V31, P301
[2]  
DAVIS C, 1968, ACTA SCI MATH, V29, P69
[3]  
DOWSON H. R., 1978, SPECTRAL THEORY LINE
[4]  
Gustafson K. E., 1997, NUMERICAL RANGES
[5]  
Halmos P.R., 1982, HILBERT SPACE PROBLE
[6]   C*-Algebra Numerical Range of Quadratic Elements [J].
Heydari, M. T. .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2010, 5 (01) :49-53
[7]  
Horn R. A., 2013, MATRIX ANAL, V2nd
[8]   DAVIS-WIELANDT SHELLS OF OPERATORS [J].
Li, Chi-Kwong ;
Poon, Yiu-Tung ;
Sze, Nung-Sing .
OPERATORS AND MATRICES, 2008, 2 (03) :341-355
[9]  
Wielandt H., 1955, PAC J MATH, V5, P633