A dynamical systems approach to spiral wave dynamics

被引:39
作者
Barkley, Dwight [1 ,2 ,3 ]
Kevrekidis, Ioannis G. [4 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Texas Austin, Ctr Nonlinear Dynam, Austin, TX 78712 USA
[3] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon, France
[4] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
关键词
D O I
10.1063/1.166023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple system of five nonlinear ordinary differential equations is shown to reproduce many dynamical features of spiral waves in two-dimensional excitable media.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 1988, SINGULARITIES GROUPS
[2]   LINEAR-STABILITY ANALYSIS OF ROTATING SPIRAL WAVES IN EXCITABLE MEDIA [J].
BARKLEY, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (13) :2090-2093
[3]   EUCLIDEAN SYMMETRY AND THE DYNAMICS OF ROTATING SPIRAL WAVES [J].
BARKLEY, D .
PHYSICAL REVIEW LETTERS, 1994, 72 (01) :164-167
[4]   A MODEL FOR FAST COMPUTER-SIMULATION OF WAVES IN EXCITABLE MEDIA [J].
BARKLEY, D .
PHYSICA D, 1991, 49 (1-2) :61-70
[5]   SPIRAL-WAVE DYNAMICS IN A SIMPLE-MODEL OF EXCITABLE MEDIA - THE TRANSITION FROM SIMPLE TO COMPOUND ROTATION [J].
BARKLEY, D ;
KNESS, M ;
TUCKERMAN, LS .
PHYSICAL REVIEW A, 1990, 42 (04) :2489-2492
[6]   SPIRAL WAVE SOLUTIONS FOR REACTION DIFFUSION-EQUATIONS IN A FAST REACTION SLOW DIFFUSION LIMIT [J].
BERNOFF, AJ .
PHYSICA D, 1991, 53 (01) :125-150
[7]  
GUCKENHEIMER J, 1986, PHYSICA D, V20, P1
[8]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[9]   CHEMICAL VORTEX DYNAMICS IN THE BELOUSOV-ZHABOTINSKY REACTION AND IN THE 2-VARIABLE OREGONATOR MODEL [J].
JAHNKE, W ;
SKAGGS, WE ;
WINFREE, AT .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (02) :740-749
[10]  
JAHNKE W, 1991, INT J BIFURCAT CHAOS, V1, P455