GENERALIZED FINITE-DIFFERENCE SCHEMES

被引:58
作者
SWARTZ, B
WENDROFF, B
机构
关键词
D O I
10.2307/2005052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:37 / &
相关论文
共 16 条
[1]   NON-LINEAR EQUATIONS OF EVOLUTION [J].
BROWDER, FE .
ANNALS OF MATHEMATICS, 1964, 80 (03) :485-&
[2]   NON-LINEAR INITIAL VALUE PROBLEMS [J].
BROWDER, FE .
ANNALS OF MATHEMATICS, 1965, 82 (01) :51-&
[3]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .I. 1 DIMENSIONAL PROBLEM [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1967, 9 (05) :394-&
[4]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[5]  
De Boor C, 1966, THESIS U MICHIGAN
[6]  
KREISS HO, 1963, NUMER MATH, V5, P24
[7]  
Lions J.-L., 1961, EQUATIONS DIFFERENTI, V111
[8]  
Lumer G., 1961, PACIFIC J MATH, V11, P679, DOI [10.2140/pjm.1961.11.679, DOI 10.2140/PJM.1961.11.679]
[9]   MONOTONE (NONLINEAR) OPERATORS IN HILBERT SPACE [J].
MINTY, GJ .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (03) :341-&
[10]  
Richtmyer R. D., 1994, DIFFERENCE METHODS I