Super edge-antimagic labeling of a cycle with a chord

被引:0
作者
Baca, M. [1 ]
Murugan, M. [2 ]
机构
[1] Tech Univ, Dept Applid Math, Letna 9, Kosice 04200, Slovakia
[2] Amer Coll, Dept Math, Madurai 625002, Tamil Nadu, India
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2006年 / 35卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An (a,d)-edge-antimagic total labeling of G is a one-to-one mapping g taking the vertices and edges onto 1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar so that the edge-weights w(uv) = g(u)+g(v)+g(uv), uv epsilon E(G), form an arithmetic progression with initial term a and common difference d. Such a labeling is called super if the smallest labels appear on the vertices. In this paper, we investigate the existence of super (a, d)-edge-antimagic total labelings of graphs derived from cycles by adding one chord.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 9 条
[1]   STRONGLY INDEXABLE GRAPHS [J].
ACHARYA, BD ;
HEGDE, SM .
DISCRETE MATHEMATICS, 1991, 93 (2-3) :123-129
[2]  
[Anonymous], AUSTRALAS J COMBIN
[3]  
Baca M, 2001, UTILITAS MATHEMATICA, V60, P229
[4]   The place of super edge-magic labelings among other classes of labelings [J].
Figueroa-Centeno, RM ;
Ichishima, R ;
Muntaner-Batle, FA .
DISCRETE MATHEMATICS, 2001, 231 (1-3) :153-168
[5]   MAGIC VALUATIONS OF FINITE GRAPHS [J].
KOTZIG, A ;
ROSA, A .
CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04) :451-&
[6]  
KOTZIG A, 1972, PUBL CRM, V175
[7]  
MacDougall J.A., 2003, AUSTRALAS J COMB, V28, P245
[8]  
Ringel G., 1998, SUT J MATH, V34, P105
[9]  
Wallis W D, 2001, MAGIC GRAPHS