DIFFERENTIAL SUBORDINATION AND BAZILEVIC-FUNCTIONS

被引:35
作者
PONNUSAMY, S [1 ]
机构
[1] SPIC,SCI FDN,SCH MATH,MADRAS 600017,TAMIL NADU,INDIA
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 1995年 / 105卷 / 02期
关键词
DIFFERENTIAL SUBORDINATION; UNIVALENT; STARLIKE AND CONVEX FUNCTIONS;
D O I
10.1007/BF02880363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(z) = z(n) +..., N(z) = z(n) + ... be analytic in the unit disc Delta and let lambda(z) = N(z)/zN'(z). The classical result of Sakaguchi-Libera shows that Re(M'(z)/N'(z)) > 0 implies Re(M(z)/N(z)) > 0 in Delta whenever Re(lambda(z)) > 0 in Delta. This can de expressed in terms of differential subordination as follows: for any p analytic in Delta, with p(0) = 1, p(z) + lambda(z)zp'(z) < 1 + z/1 - z implies p(z) <1 + z/1 - z, for Re lambda(z) > 0, z is an element of Delta. In this paper we determine different type of general conditions on lambda(z), h(z) and phi(z) for which one has p(z) + lambda(z) zp'(z) < h(z) implies p(z) < phi(z) < h(z), z is an element of Delta. Then we apply the above implication to obtain new theorems for some classes of normalized analytic functions. In particular we give a sufficient condition for an analytic function to be starlike in Delta.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 12 条
[1]  
CHICHRA PN, 1977, P AM MATH SOC, V62, P37
[2]   SUBORDINATION BY CONVEX FUNCTIONS [J].
HALLENBECK, DJ ;
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :191-195
[3]  
KRZYZ J, 1962, MAT FIZ CHEM, V2, P57
[4]   MARX-STROHHACKER DIFFERENTIAL SUBORDINATION SYSTEMS [J].
MILLER, SS ;
MOCANU, PT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (03) :527-534
[5]   2ND ORDER DIFFERENTIAL INEQUALITIES IN COMPLEX PLANE [J].
MILLER, SS ;
MOCANU, PT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) :289-305
[6]   DIFFERENTIAL SUBORDINATIONS AND INEQUALITIES IN THE COMPLEX-PLANE [J].
MILLER, SS ;
MOCANU, PT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 67 (02) :199-211
[7]  
MOCANU PT, 1986, FAC MATH, V5, P91
[8]  
PONNUSAMY S, 1990, CONVOLUTION CONVEXIT
[9]  
PONNUSAMY S, 1992, COMPLEX VARIABLES, V19, P185
[10]  
Ponnussamy S., 1989, COMPLEX VARIABLES TH, V11, P79