LOCAL ELECTRONIC-PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS

被引:28
作者
ZHONG, JX [1 ]
YOU, JQ [1 ]
YAN, JR [1 ]
YAN, XH [1 ]
机构
[1] CHINESE CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA
来源
PHYSICAL REVIEW B | 1991年 / 43卷 / 16期
关键词
D O I
10.1103/PhysRevB.43.13778
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An exact real-space renormalization-group approach is developed to calculate the local Green's function and the local density of states at any site in an infinite Fibonacci chain, in which three basic renormalization transformations T-alpha, T-beta, and T-gamma are introduced. Transformations T-beta and T-gamma divide the Fibonacci chains of different generations into two distinct subclasses with key sites S-beta and S-gamma, respectively. The local Green's function and the local density of states at the key site S-beta or S-gamma can be obtained by successive iterations of the transformation T-beta or T-gamma. Any other site can be transferred to the key site of a renormalized Fibonacci chain by suitable combinations of the transformations T-alpha, T-beta, and T-gamma. In this approach, the relevant scale concerning the key site is tau-2, where tau is the golden mean.
引用
收藏
页码:13778 / 13781
页数:4
相关论文
共 26 条
[1]   EXACT DECIMATION APPROACH TO THE GREEN-FUNCTIONS OF THE FIBONACCI-CHAIN QUASICRYSTAL [J].
ASHRAFF, JA ;
STINCHCOMBE, RB .
PHYSICAL REVIEW B, 1988, 37 (10) :5723-5729
[2]   VIBRATIONAL-MODES IN A ONE-DIMENSIONAL QUASI-ALLOY - THE MORSE CASE [J].
AXEL, F ;
ALLOUCHE, JP ;
KLEMAN, M ;
MENDESFRANCE, M ;
PEYRIERE, J .
JOURNAL DE PHYSIQUE, 1986, 47 (C-3) :181-186
[3]   EXACT REAL-SPACE RENORMALIZATION-GROUP APPROACH FOR THE LOCAL ELECTRONIC GREEN-FUNCTIONS ON AN INFINITE FIBONACCI CHAIN [J].
CHAKRABARTI, A ;
KARMAKAR, SN ;
MOITRA, RK .
PHYSICAL REVIEW B, 1989, 39 (13) :9730-9733
[4]   LOCAL DENSITY OF STATES IN A DISORDERED CHAIN - A RENORMALIZATION GROUP-APPROACH [J].
DASILVA, CETG ;
KOILLER, B .
SOLID STATE COMMUNICATIONS, 1981, 40 (03) :215-219
[5]   SCALING AND EIGENSTATES FOR A CLASS OF ONE-DIMENSIONAL QUASIPERIODIC LATTICES [J].
GUMBS, G ;
ALI, MK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09) :L517-L521
[6]   DYNAMICAL MAPS, CANTOR SPECTRA, AND LOCALIZATION FOR FIBONACCI AND RELATED QUASIPERIODIC LATTICES [J].
GUMBS, G ;
ALI, MK .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :1081-1084
[7]   3 CLASSES OF ONE-DIMENSIONAL, 2-TILE PENROSE TILINGS AND THE FIBONACCI KRONIG-PENNEY MODEL AS A GENERIC CASE [J].
HOLZER, M .
PHYSICAL REVIEW B, 1988, 38 (03) :1709-1720
[8]   NONLINEAR DYNAMICS OF LOCALIZATION IN A CLASS OF ONE-DIMENSIONAL QUASICRYSTALS [J].
HOLZER, M .
PHYSICAL REVIEW B, 1988, 38 (08) :5756-5759
[9]   QUASI-PERIODIC LATTICE - ELECTRONIC-PROPERTIES, PHONON PROPERTIES, AND DIFFUSION [J].
KOHMOTO, M ;
BANAVAR, JR .
PHYSICAL REVIEW B, 1986, 34 (02) :563-566
[10]   CRITICAL WAVE-FUNCTIONS AND A CANTOR-SET SPECTRUM OF A ONE-DIMENSIONAL QUASI-CRYSTAL MODEL [J].
KOHMOTO, M ;
SUTHERLAND, B ;
TANG, C .
PHYSICAL REVIEW B, 1987, 35 (03) :1020-1033