A MODIFIED PARTICLE SWARM OPTIMIZATION WITH MUTATION AND REPOSITION

被引:0
作者
Ratanavilisacul, Chiabwoot [1 ]
Kruatrachue, Boontee [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Fac Engn, Dept Comp Engn, Chalongkrung Rd, Bangkok 10520, Thailand
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2014年 / 10卷 / 06期
关键词
Particle swarm optimization; Binary particle swarm optimization; Mutation operator; Multidimensional knapsack problem; Genetic algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The common problems of particle swarm optimization (PSO) are those of trapping in local optimum and premature convergence. This research paper aims to develop a solution to both problems by introducing mutation around particles and employing the reposition technique. The concurrent use of the introduced mutation and reposition has proved to solve both problems and enhanced the PSO performance; and thus is employed in this research. The proposed technique is termed MRPSO. MRPSO is tested on sixteen benchmark functions and the multidimensional knapsack problems (MKP). MRPSO yields the more satisfactory search results than the genetic algorithm (GA) and PSOs for the benchmark functions and the MKPs.
引用
收藏
页码:2127 / 2142
页数:16
相关论文
共 54 条
[1]  
Alireza Alfi, 2011, Acta Automatica Sinica, V37, P541, DOI 10.3724/SP.J.1004.2011.00541
[2]  
Andrews PS, 2006, IEEE C EVOL COMPUTAT, P1029
[3]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[4]  
Bai Q., 2010, COMPUTER INFORM SCI, V3, P180, DOI 10.5539/cis.v3n1p180
[5]   A Modified Binary Particle Swarm Optimization for Knapsack Problems [J].
Bansal, Jagdish Chand ;
Deep, Kusum .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) :11042-11061
[6]  
Beasley J. E., ORLIB OPERATIONS RES
[7]  
Choi H., 2010, 8 INT C SUPPL CHAIN, P1
[8]   A genetic algorithm for the multidimensional knapsack problem [J].
Chu, PC ;
Beasley, JE .
JOURNAL OF HEURISTICS, 1998, 4 (01) :63-86
[9]  
Darweesh M. S., 2012, INNOVATIONS COMMUNIC, P1
[10]  
Deane J., 2013, INT J MANAGEMENT INF, V17, P43