A hybrid enzyme which site-specifically hydrolyzes RNA was created by covalently linking an oligodeoxyribonucleotide to Escherichia coli ribonuclease HI, an enzyme which specifically cleaves RNA moiety of DNA/RNA hybrids. A cysteine residue was substituted for Glu135 by site-directed mutagenesis in the mutant enzyme, in which all 3 free cysteine residues were replaced by alanine (Kanaya, S., Kimura, S., Katsuda, C., and Ikehara, M. (1990) Biochem. J. 271, 59-66), and coupled with a maleimide group, which is attached to the 5' terminus of the nonadeoxyribonucleotide (5'-GTCATCTCC-3') with a flexible tether. The resulting hybrid enzyme, d9-C135/RNase H, cleaved the phosphodiester bond between the fifth and sixth residues of the complementary nonaribonucleotide, without addition of the oligodeoxyribonucleotide. The nonaribonucleotide is cleaved by the wild-type or unmodified mutant enzyme only when the complementary oligodeoxyribonucleotide is present. When the kinetic parameters of the hybrid enzyme for the hydrolysis of the nonaribonucleotide were compared with those of the unmodified mutant enzyme for the hydrolysis of the nonanucleotide duplex, the hybrid enzyme exhibited a 7- and 4-fold decreases in the K(m) and k(cat) values, respectively, indicating that it performs multiple turnovers and has a sufficiently high hydrolytic activity. Hybrid ribonucleases H with various oligodeoxyribonucleotides in size and sequence, therefore, might be used as excellent tools for structural and functional studies of RNA.