Segmenting trajectories: A framework and algorithms using spatiotemporal criteria

被引:78
作者
Buchin, Maike [1 ]
Driemel, Anne [2 ]
van Kreveld, Marc [2 ]
Sacristan, Vera [3 ]
机构
[1] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[3] Univ Politecn Cataluna, Dept Matemat Aplicada 2, Barcelona, Spain
关键词
spatial and spatiotemporal information systems; computational geometry; moving objects analysis; trajectory analysis; segmentation;
D O I
10.5311/JOSIS.2011.3.66
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
In this paper we address the problem of segmenting a trajectory based on spatiotemporal criteria. We require that each segment is homogeneous in the sense that a set of spatiotemporal criteria are fulfilled. We define different such criteria, including location, heading, speed, velocity, curvature, sinuosity, curviness, and shape. We present an algorithmic framework that allows us to segment any trajectory into a minimum number of segments under any of these criteria, or any combination of these criteria. In this framework, a segmentation can generally be computed in O(n log n) time, where n is the number of edges of the trajectory to be segmented. We also discuss the robustness of our approach.
引用
收藏
页码:33 / 63
页数:31
相关论文
共 42 条
[1]   Near-linear time approximation algorithms for curve simplification [J].
Agarwal, PK ;
Har-Peled, S ;
Mustafa, NH ;
Wang, YS .
ALGORITHMICA, 2005, 42 (3-4) :203-219
[2]  
Anagnostopoulos A., 2006, P 12 ACM SIGKDD INT, P34, DOI DOI 10.1145/1150402.1150411
[3]   ON THE APPROXIMATION OF CURVES BY LINE SEGMENTS USING DYNAMIC PROGRAMMING [J].
BELLMAN, R .
COMMUNICATIONS OF THE ACM, 1961, 4 (06) :284-284
[4]   How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? [J].
Benhamou, S .
JOURNAL OF THEORETICAL BIOLOGY, 2004, 229 (02) :209-220
[5]   OPTIMAL SINUOSITY IN CENTRAL PLACE FORAGING MOVEMENTS [J].
BOVET, P ;
BENHAMOU, S .
ANIMAL BEHAVIOUR, 1991, 42 :57-62
[6]  
Braun JV, 1998, STAT SCI, V13, P142
[7]  
BUCHIN K, 2008, P 16 ACM SIGSPATIAL, P288, DOI DOI 10.1145/1463434.1463476
[8]   DETECTING COMMUTING PATTERNS BY CLUSTERING SUBTRAJECTORIES [J].
Buchin, Kevin ;
Buchin, Maike ;
Gudmundsson, Joachim ;
Loeffler, Maarten ;
Luo, Jun .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2011, 21 (03) :253-282
[9]  
Buchin M., 2010, P 18 SIGSPATIAL INT, P202, DOI DOI 10.1145/1869790.1869821
[10]  
CHUNDI P., 2009, SEGMENTATION TIME SE, P1753, DOI [10.4018/978-1-60566-010-3.ch267, DOI 10.4018/978-1-60566-010-3.CH267]