SPLIT EQUALITY FIXED POINT PROBLEM FOR TWO QUASI-ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS

被引:17
作者
Tang, Jinfang [1 ]
Chang, Shih-Sen [2 ]
Dong, Jian [1 ]
机构
[1] Yibin Univ, Coll Math, Yibin 644007, Sichuan, Peoples R China
[2] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2017年 / 2017卷
关键词
Split equality fixed point problem; Quasi-asymptotically pseudocontractive mapping; Quasi-asymptotically nonexpansive mapping; Strong convergence theorem;
D O I
10.23952/jnfa.2017.26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a split equality fixed point problem for two quasi-asymptotically pseudo-contractive mappings. Some properties for quasi-asymptotically pseudocontractive operators are presented. An iterative algorithm for solving the split common fixed point problem for two quasi-pseudocontractive operators is constructed. Weak and strong convergence theorems are established in Hilbert spaces.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
Censor Y., Elfving T., A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8, pp. 221-239, (1994)
[2]  
Byrne C., Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Probl., 18, pp. 41-453, (2002)
[3]  
Censor Y., Bortfeld T., Martin N., Trofimov A., A unified approach for inversion problem in intensitymodulated radiation therapy, Phys. Med. Biol., 51, pp. 2353-2365, (2006)
[4]  
Censor Y., Elfving T., Kopf N., Bortfeld T., The multiple-sets split feasiblility problem and its applications, Inverse Prob., 21, pp. 2071-2084, (2005)
[5]  
Censor Y., Motova A., Segal A., Perturbed projections ans subgradient projiections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., 327, pp. 1244-1256, (2007)
[6]  
Tang J.F., Chang S.S., Strong convergence theorem of two-step iterative algorithm for split feasibility problems, J. Inequal. Appl., 2014, (2014)
[7]  
Tang J.F., Chang S.S., Yuan F., Strong convergence theorem for equilibrium problems and split feasibility problems in Hilbert spaces, Fixed Point Theory Appl., 2014, (2014)
[8]  
Fang N., Gong Y., Viscosity iterative methods for split variational inclusion problems and fixed point problems of a nonexpansive mapping, Commun. Optim. Theory, 2016, (2016)
[9]  
Chang S.S., Agarwal R.P., Strong convergence theorems of general split equality problems for quasinonexpansive mappings, J. Inequal. Appl., 2014, (2014)
[10]  
Chang S.S., Wang L., Tang Y.K., Wang G., Moudafi's open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems, Fixed Point Theory Appl., 2014, (2014)