SYMMETRY PROPERTIES OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS WITHOUT UNIQUENESS

被引:4
作者
BADIALE, M
BARDI, M
机构
[1] Dipartimento di Matematica Pura e Applicata, Università di Padova, 35131 Padova, via Belzoni
关键词
COMPARISON PRINCIPLES; EIKONAL EQUATIONS; HAMILTON-JACOBI EQUATIONS; METHOD OF MOVING PLANES; MONOTONICITY; SYMMETRY; VISCOSITY SOLUTIONS;
D O I
10.1016/0362-546X(90)90151-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1031 / 1043
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1984, RANDOM PERTURBATIONS
[2]   GEOMETRIC-PROPERTIES OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 58 (03) :364-380
[3]   A BOUNDARY-VALUE PROBLEM FOR THE MINIMUM-TIME FUNCTION [J].
BARDI, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) :776-785
[4]  
BARDI M, IN PRESS T AM MATH S
[5]  
BERESTYCKI H, MONOTONICITY SYMMETR
[6]  
BERESTYCKI H, SOME QUALITATIVE PRO
[7]  
CRANDALL MG, 1987, J MATH SOC JPN, V39, P581
[8]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[9]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[10]  
EVANS LC, 1985, ANN I H POINCARE-AN, V2, P1