ASYMPTOTIC LIMIT OF THE FORM-FACTOR-ALPHA AND FORM-FACTOR-BETA PRODUCT FOR CELESTIAL BODIES

被引:10
作者
FERRONSKY, VI
DENISIK, SA
FERRONSKY, SV
机构
[1] Water Problems Institute of the Academy of Sciences of the USSR, Moscow, K-64, 13/3 Sadovaya, Chernogryazskaya
来源
CELESTIAL MECHANICS | 1979年 / 20卷 / 01期
关键词
D O I
10.1007/BF01236609
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The applicability of the properties of central configurations proceeding from the many-body problem to study of gaseous sphere cloud evolution during its gravitational contraction is justified. It is shown that the product αβ runs to a constant value in the asymptotic time limit of simultaneous collision of all the particles of the cloud where α is a form-factor of the potential energy and β is a form-factor of the moment of inertia. The spherical bodies as well as ellipsoids of rotation and general ellipsoids with a one-dimensional mass distribution ρ{variant}(k), k∈[0, 1] are found to possess the property αβ=const. © 1979 D. Reidel Publishing Co.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 11 条
  • [1] Chandrasekhar S., 1969, Ellipsoidal figures of equilibrium
  • [2] Dive P., 1931, B SOC MATH FRANCE, V59, P128
  • [3] DUBOSHIN GN, NEBESNAYA MECHANIKA
  • [4] SOLUTION OF JACOBIS VIRIAL EQUATION FOR CELESTIAL BODIES
    FERRONSKY, VI
    DENISIK, SA
    FERRONSKY, SV
    [J]. CELESTIAL MECHANICS, 1978, 18 (02): : 113 - 140
  • [5] VIRIAL-BASED SOLUTION FOR THE VELOCITY OF GASEOUS SPHERE GRAVITATIONAL CONTRACTION
    FERRONSKY, VI
    DENISIK, SA
    FERRONSKY, SV
    [J]. CELESTIAL MECHANICS, 1979, 19 (02): : 173 - 201
  • [6] GRADSHTEIN IS, 1971, TABLITIZI INTEGRALOV
  • [7] Jacobi C G J, 1884, VORLESUNGEN DYNAMIK
  • [8] JANKE E, 1960, TAFEN HOHEREN FUNKTI
  • [9] MAXIMAL EXTENSION OF SCHWARZSCHILD METRIC
    KRUSKAL, MD
    [J]. PHYSICAL REVIEW, 1960, 119 (05): : 1743 - 1745
  • [10] Landau L.D., 1973, TEORIYA POLYA