SHORT-TERM FORECASTING OF LOADS AND WIND POWER FOR LATVIAN POWER SYSTEM: ACCURACY AND CAPACITY OF THE DEVELOPED TOOLS

被引:4
作者
Radziukynas, V. [1 ]
Klementavicius, A. [1 ]
机构
[1] Riga Tech Univ, 1 Kalku Str, LV-1658 Riga, Latvia
关键词
forecasting error; short-term forecasting; system load; wind power; wind speed;
D O I
10.1515/lpts-2016-0008
中图分类号
O59 [应用物理学];
学科分类号
摘要
The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).
引用
收藏
页码:3 / 13
页数:11
相关论文
共 19 条
[1]  
Augstsprieguma tikls. [Latvian Transmission System Operator], 2014, EL PARV SIST ATT PLA
[2]  
Augstsprieguma tikls. [Latvian Transmission System Operator], 2015, DEM NET EXCH PROD
[3]  
Banuelos-Ruedas F., 2011, WIND FARM TECHNICAL, DOI [10.5772/673, DOI 10.5772/673]
[4]   Wind speed forecasting in the South Coast of Oaxaca, Mexico [J].
Cadenas, Erasmo ;
Rivera, Wilfrido .
RENEWABLE ENERGY, 2007, 32 (12) :2116-2128
[5]   Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model [J].
Cadenas, Erasmo ;
Rivera, Wilfrido .
RENEWABLE ENERGY, 2010, 35 (12) :2732-2738
[6]   A review on the young history of the wind power short-term prediction [J].
Costa, Alexandre ;
Crespo, Antonio ;
Navarro, Jorge ;
Lizcano, Gil ;
Madsen, Henrik ;
Feitosa, Everaldo .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (06) :1725-1744
[7]   A review of large-scale wind integration studies [J].
Dowds, Jonathan ;
Hines, Paul ;
Ryan, Todd ;
Buchanan, William ;
Kirby, Elizabeth ;
Apt, Jay ;
Jaramillo, Paulina .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 49 :768-794
[8]  
ENERCON, 2015, EN WIND TURB PROD OV
[9]   Neural networks for short-term load forecasting: A review and evaluation [J].
Hippert, HS ;
Pedreira, CE ;
Souza, RC .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2001, 16 (01) :44-55
[10]   Day-ahead wind speed forecasting using f-ARIMA models [J].
Kavasseri, Rajesh G. ;
Seetharaman, Krithika .
RENEWABLE ENERGY, 2009, 34 (05) :1388-1393