Parameter Exploration to Improve Performance of Memristor-Based Neuromorphic Architectures

被引:3
作者
Shahsavari, Mahyar [1 ]
Boulet, Pierre [1 ]
机构
[1] Univ Lille, CRIStAL Ctr Rech Informat Signal & Automat Lille, CNRS, Cent Lille,UMR 9189, F-59000 Lille, France
来源
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS | 2018年 / 4卷 / 04期
关键词
Neuromorphic computing; parameter evaluations; spiking neural networks; memristor; unsupervised learning;
D O I
10.1109/TMSCS.2017.2761231
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The brain-inspired spiking neural network neuromorphic architecture offers a promising solution for a wide set of cognitive computation tasks at a very low power consumption. Due to the practical feasibility of hardware implementation, we present a memristor-based model of hardware spiking neural networks which we simulate with Neural Network Scalable Spiking Simulator (N2S3), our open source neuromorphic architecture simulator. Although Spiking neural networks are widely used in the community of computational neuroscience and neuromorphic computation, there is still a need for research on the methods to choose the optimum parameters for better recognition efficiency. With the help of our simulator, we analyze and evaluate the impact of different parameters such as number of neurons, STDP window, neuron threshold, distribution of input spikes, and memristor model parameters on the MNIST hand-written digit recognition problem. We show that a careful choice of a few parameters (number of neurons, kind of synapse, STDP window, and neuron threshold) can significantly improve the recognition rate on this benchmark (around 15 points of improvement for the number of neurons, a few points for the others) with a variability of four to five points of recognition rate due to the random initialization of the synaptic weights.
引用
收藏
页码:833 / 846
页数:14
相关论文
共 65 条
[11]   Simulation of networks of spiking neurons:: A review of tools and strategies [J].
Brette, Romain ;
Rudolph, Michelle ;
Carnevale, Ted ;
Hines, Michael ;
Beeman, David ;
Bower, James M. ;
Diesmann, Markus ;
Morrison, Abigail ;
Goodman, Philip H. ;
Harris, Frederick C., Jr. ;
Zirpe, Milind ;
Natschlaeger, Thomas ;
Pecevski, Dejan ;
Ermentrout, Bard ;
Djurfeldt, Mikael ;
Lansner, Anders ;
Rochel, Olivier ;
Vieville, Thierry ;
Muller, Eilif ;
Davison, Andrew P. ;
El Boustani, Sami ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) :349-398
[12]  
Chanthbouala A., 2012, FERROELECTRIC MEMRIS
[13]   A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory [J].
Chicca, E ;
Badoni, D ;
Dante, V ;
D'Andreagiovanni, M ;
Salina, G ;
Carota, L ;
Fusi, S ;
Del Giudice, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (05) :1297-1307
[14]  
Davison A. P., 2009, FRONT NEUROINFORM, V2, DOI [10.3389/neuro.11.011.2008/full, DOI 10.3389/NEURO.11.011.2008/FULL]
[15]   Low voltage and time constant organic synapse-transistor [J].
Desbief, Simon ;
Kyndiah, Adrica ;
Guerin, David ;
Gentili, Denis ;
Murgia, Mauro ;
Lenfant, Stephane ;
Alibart, Fabien ;
Cramer, Tobias ;
Biscarini, Fabio ;
Vuillaume, Dominique .
ORGANIC ELECTRONICS, 2015, 21 :47-53
[16]  
Diehl P. U., 2015, FRONTIERS COMPUTATIO, DOI [10.3389/fncom.2015.00099/full, DOI 10.3389/FNCOM.2015.00099/FULL]
[17]   Extending the effects of spike-timing-dependent plasticity to behavioral timescales [J].
Drew, Patrick J. ;
Abbott, L. F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (23) :8876-8881
[18]   Phase-transition driven memristive system [J].
Driscoll, T. ;
Kim, H. -T. ;
Chae, B. -G. ;
Di Ventra, M. ;
Basov, D. N. .
APPLIED PHYSICS LETTERS, 2009, 95 (04)
[19]  
Eryilmaz Sukru Burc, 2016, 2016 17th International Symposium on Quality Electronic Design (ISQED), P118, DOI 10.1109/ISQED.2016.7479186
[20]   Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array [J].
Eryilmaz, Sukru B. ;
Kuzum, Duygu ;
Jeyasingh, Rakesh ;
Kim, SangBum ;
BrightSky, Matthew ;
Lam, Chung ;
Wong, H. -S. Philip .
FRONTIERS IN NEUROSCIENCE, 2014, 8