Parameter Exploration to Improve Performance of Memristor-Based Neuromorphic Architectures

被引:3
作者
Shahsavari, Mahyar [1 ]
Boulet, Pierre [1 ]
机构
[1] Univ Lille, CRIStAL Ctr Rech Informat Signal & Automat Lille, CNRS, Cent Lille,UMR 9189, F-59000 Lille, France
来源
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS | 2018年 / 4卷 / 04期
关键词
Neuromorphic computing; parameter evaluations; spiking neural networks; memristor; unsupervised learning;
D O I
10.1109/TMSCS.2017.2761231
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The brain-inspired spiking neural network neuromorphic architecture offers a promising solution for a wide set of cognitive computation tasks at a very low power consumption. Due to the practical feasibility of hardware implementation, we present a memristor-based model of hardware spiking neural networks which we simulate with Neural Network Scalable Spiking Simulator (N2S3), our open source neuromorphic architecture simulator. Although Spiking neural networks are widely used in the community of computational neuroscience and neuromorphic computation, there is still a need for research on the methods to choose the optimum parameters for better recognition efficiency. With the help of our simulator, we analyze and evaluate the impact of different parameters such as number of neurons, STDP window, neuron threshold, distribution of input spikes, and memristor model parameters on the MNIST hand-written digit recognition problem. We show that a careful choice of a few parameters (number of neurons, kind of synapse, STDP window, and neuron threshold) can significantly improve the recognition rate on this benchmark (around 15 points of improvement for the number of neurons, a few points for the others) with a variability of four to five points of recognition rate due to the random initialization of the synaptic weights.
引用
收藏
页码:833 / 846
页数:14
相关论文
共 65 条
  • [1] A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing
    Alibart, Fabien
    Pleutin, Stephane
    Bichler, Olivier
    Gamrat, Christian
    Serrano-Gotarredona, Teresa
    Linares-Barranco, Bernabe
    Vuillaume, Dominique
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (03) : 609 - 616
  • [2] An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse
    Alibart, Fabien
    Pleutin, Stephane
    Guerin, David
    Novembre, Christophe
    Lenfant, Stephane
    Lmimouni, Kamal
    Gamrat, Christian
    Vuillaume, Dominique
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) : 330 - 337
  • [3] Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses
    Ambrogio, Stefano
    Ciocchini, Nicola
    Laudato, Mario
    Milo, Valerio
    Pirovano, Agostino
    Fantini, Paolo
    Ielmini, Daniele
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [4] Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity
    Babadi, Baktash
    Abbott, L. F.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (03)
  • [5] Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations
    Benjamin, Ben Varkey
    Gao, Peiran
    McQuinn, Emmett
    Choudhary, Swadesh
    Chandrasekaran, Anand R.
    Bussat, Jean-Marie
    Alvarez-Icaza, Rodrigo
    Arthur, John V.
    Merolla, Paul A.
    Boahen, Kwabena
    [J]. PROCEEDINGS OF THE IEEE, 2014, 102 (05) : 699 - 716
  • [6] Bichler O, 2013, PROCEEDINGS OF THE 2013 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), P7, DOI 10.1109/NanoArch.2013.6623029
  • [7] Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity
    Bichler, Olivier
    Querlioz, Damien
    Thorpe, Simon J.
    Bourgoin, Jean-Philippe
    Gamrat, Christian
    [J]. NEURAL NETWORKS, 2012, 32 : 339 - 348
  • [8] Point-to-point connectivity between neuromorphic chips using address events
    Boahen, KA
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2000, 47 (05) : 416 - 434
  • [9] A hybrid nanomemristor/transistor logic circuit capable of self-programming
    Borghetti, Julien
    Li, Zhiyong
    Straznicky, Joseph
    Li, Xuema
    Ohlberg, Douglas A. A.
    Wu, Wei
    Stewart, Duncan R.
    Williams, R. Stanley
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (06) : 1699 - 1703
  • [10] Boulet P., 2017, 9189 CRISTAL UMR U L