COHOMOLOGICAL DIMENSION AND ARITHMETICAL RANK OF SOME DETERMINANTAL IDEALS

被引:3
作者
Bolognini, Davide [1 ]
Caminata, Alessio [2 ]
Macchia, Antonio [3 ]
Mostafazadehfard, Maral [4 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Univ Osnabruck, Inst Math, D-49076 Osnabruck, Germany
[3] Univ Marburg, Fachbereich Math & Informat, D-35032 Marburg, Germany
[4] Univ Fed Pernambuco, CCEN, Dept Matemat, BR-50740560 Recife, PE, Brazil
来源
MATEMATICHE | 2015年 / 70卷 / 01期
关键词
ideals of minors; cohomological dimension; arithmetical rank;
D O I
10.4418/2015.70.1.18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a (2 x n) non-generic matrix of linear forms in a polynomial ring. For large classes of such matrices, we compute the cohomological dimension (cd) and the arithmetical rank (ara) of the ideal I-2 (M) generated by the 2-minors of M. Over an algebraically closed field, any (2 x n) -matrix of linear forms can be written in the Kronecker-Weierstrass normal form, as a concatenation of scroll, Jordan and nilpotent blocks. B. adescu and Valla computed ara (I-2 (M)) when M is a concatenation of scroll blocks. In this case we compute cd (I-2 (M)) and extend these results to concatenations of Jordan blocks. Eventually we compute ara (I-2 (M)) and cd (I-2 (M)) in an interesting mixed case, when M contains both Jordan and scroll blocks. In all cases we show that ara (I-2 (M)) is less than the arithmetical rank of the determinantal ideal of a generic matrix.
引用
收藏
页码:273 / 300
页数:28
相关论文
共 25 条
[1]   Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls [J].
Badescu, Lucian ;
Valla, Giuseppe .
JOURNAL OF ALGEBRA, 2010, 324 (07) :1636-1655
[2]   On ideals generated by monomials and one binomial [J].
Barile, Margherita .
ALGEBRA COLLOQUIUM, 2007, 14 (04) :631-638
[3]  
Brodmann M.P., 1998, LOCAL COHOMOLOGY ALG, V60
[4]   THE NUMBER OF EQUATIONS DEFINING A DETERMINANTAL VARIETY [J].
BRUNS, W ;
SCHWANZL, R .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :439-445
[5]  
Bruns W., 1987, COMMUTATIVE ALGEBRA, P111
[6]  
Bruns W., 1988, LECT NOTES MATH, V1327
[7]   IDEALS DEFINED BY MATRICES AND A CERTAIN COMPLEX ASSOCIATED WITH THEM [J].
EAGON, JA ;
NORTHCOTT, DG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1337) :188-&
[8]  
Gantmacher, 1959, THEORY MATRICES, P125
[9]   COHOMOLOGICAL DIMENSION OF ALGEBRAIC VARIETIES [J].
HARTSHORNE, R .
ANNALS OF MATHEMATICS, 1968, 88 (03) :403-+
[10]  
Hartshorne R., 1970, LECT NOTES MATH, V156