AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION

被引:3904
作者
ALTMAN, NS
机构
关键词
CONFIDENCE INTERVALS; LOCAL LINEAR REGRESSION; MODEL BUILDING; MODEL CHECKING; SMOOTHING;
D O I
10.2307/2685209
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression is a set of techniques for estimating a regression curve without making strong assumptions about the shape of the true regression function. These techniques are therefore useful for building and checking parametric models, as well as for data description. Kernel and nearest-neighbor regression estimators are local versions of univariate location estimators, and so they can readily be introduced to beginning students and consulting clients who are familiar with such summaries as the sample mean and median.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 44 条
[21]   PREDICTIVE SAMPLE REUSE METHOD WITH APPLICATIONS [J].
GEISSER, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) :320-328
[22]  
Gyorfi L., 1989, NONPARAMETRIC CURVE
[23]   HOW FAR ARE AUTOMATICALLY CHOSEN REGRESSION SMOOTHING PARAMETERS FROM THEIR OPTIMUM [J].
HARDLE, W ;
HALL, P ;
MARRON, JS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (401) :86-95
[24]   OPTIMAL BANDWIDTH SELECTION IN NONPARAMETRIC REGRESSION FUNCTION ESTIMATION [J].
HARDLE, W ;
MARRON, JS .
ANNALS OF STATISTICS, 1985, 13 (04) :1465-1481
[25]  
HARDLE W, 1990, ECONOMETRIC SOC MONO
[26]  
JENSS RACHEL M., 1937, HUMAN BIOL, V9, P556
[27]  
Nadaraya E. A., 1964, THEOR PROBAB APPL, V10, P186, DOI DOI 10.1137/1109020
[28]   NEW FAMILY OF MATHEMATICAL-MODELS DESCRIBING HUMAN GROWTH CURVE [J].
PREECE, MA ;
BAINES, MJ .
ANNALS OF HUMAN BIOLOGY, 1978, 5 (01) :1-24
[29]  
PRIESTLEY MB, 1972, J R STAT SOC B, V34, P385
[30]   BANDWIDTH CHOICE FOR NONPARAMETRIC REGRESSION [J].
RICE, J .
ANNALS OF STATISTICS, 1984, 12 (04) :1215-1230