CANONICAL BASES IN TENSOR-PRODUCTS

被引:61
作者
LUSZTIG, G
机构
[1] Department of Mathematics, Massachusetts Inst. of Technology, Cambridge
关键词
QUANTIZED ENVELOPING ALGEBRA; R-MATRIX; HIGHEST WEIGHT REPRESENTATION; COORDINATE ALGEBRA;
D O I
10.1073/pnas.89.17.8177
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
I construct a canonical basis in the tensor product of a simple integrable highest weight module with a simple integrable lowest weight module of a quantized enveloping algebra. This basis is simultaneously compatible with many submodules of the tensor product. As an application, I obtain a construction of a canonical basis of (a modified form of) the quantized enveloping algebra.
引用
收藏
页码:8177 / 8179
页数:3
相关论文
共 10 条
  • [1] [Anonymous], 1990, J AM MATH SOC
  • [2] A GEOMETRIC SETTING FOR THE QUANTUM DEFORMATION OF GLN
    BEILINSON, AA
    LUSZTIG, G
    MACPHERSON, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) : 655 - 677
  • [3] DRINFELD VG, 1987, 1986 P INT C MATH BE, P798
  • [4] GINZBURG V, 1991, CR ACAD SCI I-MATH, V312, P907
  • [5] ON CRYSTAL BASES OF THE Q-ANALOG OF UNIVERSAL ENVELOPING-ALGEBRAS
    KASHIWARA, M
    [J]. DUKE MATHEMATICAL JOURNAL, 1991, 63 (02) : 465 - 516
  • [6] KASHIWARA M, 1991, GLOBAL CRYSTAL BASES
  • [7] KAZHDAN D, 1991, INT MATH RES NOTICES, V2, P21
  • [8] Kostant B., 1966, P S PURE MATH, V9, P90
  • [9] Lusztig G., 1991, J AM MATH SOC, V4, P365
  • [10] TANISAKI T, 1991, KILLING FORMS HARISH