RADIAL SOLUTIONS OF A CLASS OF FULLY NONLINEAR ELLIPTIC EQUATIONS

被引:0
作者
Liu, Yong [1 ]
机构
[1] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
来源
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES | 2012年 / 10卷 / 02期
关键词
Pucci operator; radial solution; super critical;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution of a fully nonlinear elliptic equation involving Pucci maximal operator and super critical nonlinearity is studied. Using ODE analysis, nonexistence of positive radial solutions in the punctured ball with Dirichlet boundary condition is proven. The main tool is Lane-Emden type transformation and an energy functional, which replaces the usual Pohozaev identity. This is a generalization of the classical result about Laplace operator with super critical exponent.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 6 条
[1]  
Caffarelli L.A., 1995, AM MATH SOC C PUBLIC, V43
[2]  
Felmer PL, 2006, INDIANA U MATH J, V55, P593
[3]   On critical exponents for the Pucci's extremal operators [J].
Felmer, PL ;
Quaas, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05) :843-865
[4]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF
[5]   Removable singularities for fully nonlinear elliptic equations [J].
Labutin, DA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 155 (03) :201-214
[6]   SINGULAR BEHAVIOR IN NONLINEAR PARABOLIC EQUATIONS [J].
NI, WM ;
SACKS, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (02) :657-671