CURVED ASYMPTOTIC SOLITONS OF KADOMTSEV-PETVIASHVILI-I AND MODIFIED KADOMTSEV-PETVIASHVILI-I EQUATIONS

被引:7
作者
ANDERS, IA
机构
[1] B. Verkin Institute for Low Temperature Physics and Engineering, Kharkov
来源
PHYSICA D | 1995年 / 87卷 / 1-4期
关键词
D O I
10.1016/0167-2789(95)00125-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Within the framework of the Zakharov-Shabat scheme nondecreasing solutions of the Kadomtsev-Petviashvili-I equation and the modified Kadomtsev-Petviashvili-I equation are constructed. The asymptotic behaviour of these solutions is investigated for large time. It is proved that their asymptotic behaviour is described by a chain of curved solitons. It is shown that a different choice of a measure implies a different form of asymptotic solitons.
引用
收藏
页码:160 / 167
页数:8
相关论文
共 11 条
[1]  
ANDERS IA, MATEMATICHESKAYA FIZ, V1, P75
[2]  
ANDERS IA, 1993, 8TH P INT WORKSH, P77
[3]  
GUREVICH AV, 1973, JETP LETT+, V17, P268
[4]  
Khruslov E.Ya., 1976, MATEM SBORNIK NEW SE, V99, P261
[5]   SOME NEW INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS IN 2 + 1 DIMENSIONS [J].
KONOPELCHENKO, BG ;
DUBROVSKY, VG .
PHYSICS LETTERS A, 1984, 102 (1-2) :15-17
[6]   ON THE GAUGE-INVARIANT DESCRIPTION OF THE EVOLUTION-EQUATIONS INTEGRABLE BY GELFAND-DIKIJ SPECTRAL PROBLEMS [J].
KONOPELCHENKO, BG .
PHYSICS LETTERS A, 1982, 92 (07) :323-327
[7]  
MANAKOV SV, 1980, PHYS LETT A, V74, P451
[8]  
Zakharov V.E.E., 1974, FUNCT ANAL APPL+, V8, P43, DOI [10.1007/BF01075696, DOI 10.1007/BF01075696]
[9]  
ZAKHAROV VE, 1986, IZV VUZ RADIOFIZ+, V29, P1073, DOI 10.1007/BF01034479
[10]  
ZAKHAROV VE, 1985, FUNKT ANAL PRIL, V19, P11