SUPERCONVERGENCE AND A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR MIXED FINITE-ELEMENTS

被引:66
作者
BRANDTS, JH
机构
[1] Mathematical Institute, University of utrecht, Utrecht, 3508 TA, Budapestlaan 6
关键词
Mathematics Subject Classification (1991): 65N30;
D O I
10.1007/s002110050064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove superconvergence results for the vector variable when lowest order triangular mixed finite elements of Raviart-Thomas type [17] on uniform triangulations are used, i.e., that the H(div;OMEGA)-distance between the approximate solution and a suitable projection of the real solution is of higher order than the H(div;OMEGA)-error. We prove results for both Dirichlet and Neumann boundary conditions. Recently, Duran [9] proved similar results for rectangular mixed finite elements, and superconvergence along the Gauss-lines for rectangular mixed finite elements was considered by Douglas, Ewing, Lazarov and Wang in [11], [8], and [18]. The triangular case however needs some extra effort. Using the superconvergence results, a simple postprocessing of the approximate solution will give an asymptotically exact a posteriori error estimator for the L2(OMEGA)-error in the approximation of the vector variable.
引用
收藏
页码:311 / 324
页数:14
相关论文
共 18 条
[1]  
Adama R., 1975, SOBOLEV SPACES
[2]  
[Anonymous], 1977, MATH ASPECTS FINITE
[3]   ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :112-&
[4]  
BREZZI F, 1988, NUMERICAL SIMULATION
[5]  
BREZZI F, 1978, RAIRO R, V2, P129
[6]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[7]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[8]  
Douglas J. Jr., 1989, Calcolo, V26, P121, DOI 10.1007/BF02575724
[9]   ON THE ASYMPTOTIC EXACTNESS OF ERROR ESTIMATORS FOR LINEAR TRIANGULAR FINITE-ELEMENTS [J].
DURAN, R ;
MUSCHIETTI, MA ;
RODRIGUEZ, R .
NUMERISCHE MATHEMATIK, 1991, 59 (02) :107-127
[10]  
Duran R., 1990, NUMER MATH, V58, P2