Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding

被引:11
作者
Chan, Yu-Hsuan [1 ]
Correa, Carlos D. [2 ]
Ma, Kwan-Liu [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Visualization; scatterplot; sensitivity analysis; interactions; pattern discovery; data transformation; model fitting; multidimensional data visualization;
D O I
10.1145/2590349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scatterplots are commonly used to visualize multidimensional data; however, 2D projections of data offer limited understanding of the high-dimensional interactions between data points. We introduce an interactive 3D extension of scatterplots called the Regression Cube (RC), which augments a 3D scatterplot with three facets on which the correlations between the two variables are revealed by sensitivity lines and sensitivity streamlines. The sensitivity visualization of local regression on the 2D projections provides insights about the shape of the data through its orientation and continuity cues. We also introduce a series of visual operations such as clustering, brushing, and selection supported in RC. By iteratively refining the selection of data points of interest, RC is able to reveal salient local correlation patterns that may otherwise remain hidden with a global analysis. We have demonstrated our system with two examples and a user-oriented evaluation, and we show how RCs enable interactive visual exploration of multidimensional datasets via a variety of classification and information retrieval tasks. A video demo of RC is available.
引用
收藏
页数:32
相关论文
共 50 条
[1]   Being sensitive to uncertainty [J].
Arriola, Leon M. ;
Hyman, James M. .
COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (02) :10-20
[2]   Continuous Scatterplots [J].
Bachthaler, Sven ;
Weiskopf, Daniel .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) :1428-1435
[3]   Multivariate Visual Explanation for High Dimensional Datasets [J].
Barlowe, Scott ;
Zhang, Tianyi ;
Liu, Yujie ;
Yang, Jing ;
Jacobs, Donald .
IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2008, PROCEEDINGS, 2008, :147-+
[4]   Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction [J].
Berger, W. ;
Piringer, H. ;
Filzmoser, P. ;
Groeller, E. .
COMPUTER GRAPHICS FORUM, 2011, 30 (03) :911-920
[5]  
Berkhin P, 2006, GROUPING MULTIDIMENSIONAL DATA: RECENT ADVANCES IN CLUSTERING, P25
[6]  
Box George EP, 1987, EMPIRICAL MODEL BUIL
[7]   Parameter Sensitivity Visualization in DTI Fiber Tracking [J].
Brecheisen, Ralph ;
Platel, Bram ;
Vilanova, Anna ;
Romeny, Bart ter Haar .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) :1441-1448
[8]  
Cacuci DG, 2005, SENSITIVITY UNCERTAI
[9]  
Card S.K, 1999, READINGS INFORM VISU
[10]   Sensitivity analysis of model output: Variance-based methods make the difference [J].
Chan, K ;
Saltelli, A ;
Tarantola, S .
PROCEEDINGS OF THE 1997 WINTER SIMULATION CONFERENCE, 1997, :261-268