ON PATHWISE STOCHASTIC INTEGRATION

被引:106
作者
KARANDIKAR, RL
机构
[1] Indian Statistical Institute, New Delhi, 110016
关键词
BROWNIAN MOTION; SEMIMARTINGALE; STOCHASTIC INTEGRAL;
D O I
10.1016/0304-4149(95)00002-O
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we construct a mapping J:D[0, infinity)xD[0, infinity)-->D[0, infinity) such that if (X(t)) is a semimartingale on a probability space (Omega, F, P) with respect to a filtration (F-t) and if (f(t)) is an r.c.l.l. (F-t) adapted process, then J(f.(omega),X.(omega)=integral(0)f_ dX(omega) a.s. This is of significance when using stochastic integrals in statistical inference problems. Similar results on solutions to SDEs are also given.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 10 条
[1]  
BICHTELER K, 1981, ANN PROBAB, V9, P48
[2]  
JACOD J, 1979, LECTURE NOTES MATH, V714
[3]  
Karandikar R.L, 1981, SANKHYA SER A, V43, P121
[4]  
KARANDIKAR RL, 1991, LECT NOTES MATH, V1485, P113
[5]  
KARANDIKAR RL, 1983, LECT NOTES MATH, V986, P198
[6]   ON THE QUADRATIC VARIATION PROCESS OF A CONTINUOUS MARTINGALE [J].
KARANDIKAR, RL .
ILLINOIS JOURNAL OF MATHEMATICS, 1983, 27 (02) :178-181
[7]  
KARANDIKAR RL, 1989, SANKHYA SER A, V51, P121
[8]  
KARANDIKAR RL, 1983, STOCHASTIC PROCESS A, V15, P203
[9]  
METIVIER M., 1982, SEMIMARTINGALES
[10]  
Protter P.E., 2004, STOCHASTIC INTEGRATI, V2nd Edition