T-LIMIT OF A SEQUENCE OF NON-CONVEX AND NON-EQUI-LIPSCHITZ INTEGRAL FUNCTIONALS

被引:0
|
作者
BUTTAZZO, G
DALMASO, G
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:235 / 251
页数:17
相关论文
共 50 条
  • [21] Remarks on the Central Limit Theorem for Non-convex Bodies
    Grupel, Uri
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 183 - 198
  • [22] Learning-to-learn non-convex piecewise-Lipschitz functions
    Balcan, Maria-Florina
    Khodak, Mikhail
    Sharma, Dravyansh
    Talwalkar, Ameet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [23] Discrete dynamics for convex and non-convex smoothing functionals in PDE based image restoration
    Elliott, CM
    Gawron, B
    Maier-Paape, S
    Van Vleck, ES
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (01) : 181 - 200
  • [24] NECESSARY CONDITIONS OF OPTIMALITY FOR PROBLEMS WITH ONE CLASS OF LOCALLY NON-CONVEX FUNCTIONALS
    GRUBIYANOV, SF
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1980, (01): : 14 - 17
  • [25] On the structure of certain non-convex functionals and the Gaussian Z-interference channel
    Costa, Max
    Nair, Chandra
    Ng, David
    Wang, Yan Nan
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1522 - 1527
  • [26] Homogenization and the limit of vanishing hardening in Hencky plasticity with non-convex potentials
    Jesenko, Martin
    Schmidt, Bernd
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (01)
  • [27] Homogenization and the limit of vanishing hardening in Hencky plasticity with non-convex potentials
    Martin Jesenko
    Bernd Schmidt
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [28] Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints
    Roman Strongin
    Konstantin Barkalov
    Semen Bevzuk
    Soft Computing, 2020, 24 : 11853 - 11865
  • [29] Non-convex hybrid algorithm for a family of countable quasi-Lipschitz mappings and application
    Guan, Jinyu
    Tang, Yanxia
    Ma, Pengcheng
    Xu, Yongchun
    Su, Yongfu
    FIXED POINT THEORY AND APPLICATIONS, 2015, : 1 - 11
  • [30] Non-convex hybrid algorithm for a family of countable quasi-Lipschitz mappings and application
    Jinyu Guan
    Yanxia Tang
    Pengcheng Ma
    Yongchun Xu
    Yongfu Su
    Fixed Point Theory and Applications, 2015