POLYNOMIAL SYSTEMS - A LOWER-BOUND FOR THE HILBERT-NUMBERS

被引:69
作者
CHRISTOPHER, CJ
LLOYD, NG
机构
[1] Dept of Maths, Univ of Wales, Aberystwyth
来源
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES | 1995年 / 450卷 / 1938期
关键词
D O I
10.1098/rspa.1995.0081
中图分类号
学科分类号
摘要
Let H-n be the maximum possible number of limit cycles of systems x= P(x, y), y = Q(x, y), where P and Q are polynomials of degree at most n. We are concerned with the rate of growth of H-n as n increases: it is known that H-n greater than or equal to kn(2) for some constant k. In this paper we show that H-n grows at least as rapidly as n(2) log n.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 13 条
[1]  
Basarab-Horwath P, 1988, NIEUW ARCH WISK, V6, P295
[2]  
ECALLE J, 1987, CR ACAD SCI I-MATH, V304, P375
[3]  
ECALLE J, 1987, CR ACAD SCI I-MATH, V304, P431
[4]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[5]  
ILYASHENKO YS, 1969, MATH USSR SB, V7, P353
[6]  
LANDIS EM, 1960, AM MATH SOC TRANSL, V14, P181
[7]  
LANDIS EM, 1958, AM MATH SOC TRANSL, V10, P177
[8]  
LI J, 1985, ACTA MATH SINICA, V28, P509
[9]  
LLOYD NG, 1988, LONDON MATH SOC LECT, V127, P192
[10]  
Otrokov N.F., 1954, MAT SBORNIK, V34, P127