A FEW APPLICATIONS OF NEGATIVE-TYPE INEQUALITIES

被引:7
作者
DEZA, M
MAEHARA, H
机构
[1] UNIV RYUKYUS,OKINAWA,JAPAN
[2] CNRS,F-75005 PARIS,FRANCE
关键词
D O I
10.1007/BF02986674
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Applying the negative-type inequalities for square Euclidean distance, we present (1) a parallelotope theorem (a generalization of the parallelogram theorem), (2) a short proof of Rankin's theorem for the maximum number of dispersed points on a sphere, and (3) a proof of impossibility of a certain geometric embedding for some graphs.
引用
收藏
页码:255 / 262
页数:8
相关论文
共 8 条
[1]  
Assouad P., 1982, METRIC SUBSPACES L1
[2]  
Graham R. L., 1980, RAMSEY THEORY
[3]  
Grunbaum B., 2003, CONVEX POLYTOPES, V2nd
[4]   ALGEBRAIC DISTANCE GRAPHS AND RIGIDITY [J].
HOMMA, M ;
MAEHARA, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) :561-572
[5]  
MAEHARA H, 1991, DISCRETE COMPUT GEOM, V6, P56
[6]  
RANKIN RA, 1955, P GLASGOW MATH ASSOC, V2, P145
[7]   Remarks to Maurice Frechet's article "on the axiomatic definition of a class of space vectorially distanced and applicable to the Hilbert space [J].
Schoenberg, IJ .
ANNALS OF MATHEMATICS, 1935, 36 :724-732
[8]  
Seidel J. J., 1969, INDAG MATH, V72, P64