CLASSIFICATION OF MULTIDIMENSIONAL SUBMANIFOLDS IN EUCLIDEAN-SPACE WITH A TOTALLY GEODESIC GAUSS IMAGE

被引:1
作者
NIKOLAEVSKII, YA
机构
关键词
D O I
10.1070/SM1993v076n01ABEH003410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete classification is given of submanifolds that have a totally geodesic Gauss image in the ambient Grassmann manifold. The arguments are based on a study of the tangent space to the Gauss image of the submanifold and Cartan's theorem on totally geodesic submanifolds of symmetric spaces. Bibliography: 16 titles.
引用
收藏
页码:225 / 246
页数:22
相关论文
共 17 条
[1]   ON MATRICES WHOSE REAL LINEAR COMBINATIONS ARE NONSINGULAR [J].
ADAMS, JF ;
LAX, PD ;
PHILLIPS, RS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (02) :318-&
[2]   CLASSIFICATION OF SURFACES WITH TOTALLY GEODESIC GAUSS IMAGE [J].
CHEN, BY ;
YAMAGUCHI, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :143-154
[3]   IMMERSIONS WITH PARALLEL SECOND FUNDAMENTAL FORM [J].
FERUS, D .
MATHEMATISCHE ZEITSCHRIFT, 1974, 140 (01) :87-92
[4]   SYMMETRIC SUB-MANIFOLDS OF EUCLIDEAN-SPACE [J].
FERUS, D .
MATHEMATISCHE ANNALEN, 1980, 247 (01) :81-93
[5]  
GANTMAKHER FR, 1959, THEORY MATRICES, V0002
[6]  
Gantmakher FR., 1959, THEORY MATRICES, V1
[7]  
Helgason S, 1962, DIFFERENTIAL GEOMETR
[8]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2
[9]  
Kobayashi S., 1968, TOHOKU MATH J, V2, P21