Study of a viscoelastic frictional contact problem with adhesion

被引:0
作者
Touzaline, Arezki [1 ]
机构
[1] USTHB, Fac Math, Lab Syst Dynam, BP 32 Alia, Bab Ezzouar 16111, Algeria
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2011年 / 52卷 / 02期
关键词
viscoelastic; normal compliance; adhesion; frictional; variational inequality; weak solution;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a quasistatic frictional contact problem between a viscoelastic body with long memory and a deformable foundation. The contact is modelled with normal compliance in such a way that the penetration is limited and restricted to unilateral constraint. The adhesion between contact surfaces is taken into account and the evolution of the bonding field is described by a first order differential equation. We derive a variational formulation and prove the existence and uniqueness result of the weak solution under a certain condition on the coefficient of friction. The proof is based on time-dependent variational inequalities, differential equations and Banach fixed point theorem.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 33 条
[1]   Existence results for quasistatic contact problems with Coulomb friction [J].
Andersson, LE .
APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 42 (02) :169-202
[2]  
Bonetti E., 2010, DISCRETE CONTIN DY S
[3]   Global existence for a contact problem with adhesion [J].
Bonetti, Elena ;
Bonfanti, Giovanna ;
Rossi, Riccarda .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (09) :1029-1064
[4]  
Bonetti E, 2007, INDIANA U MATH J, V56, P2787
[5]   Thermal effects in adhesive contact: modelling and analysis [J].
Bonetti, Elena ;
Bonfanti, Giovanna ;
Rossi, Riccarda .
NONLINEARITY, 2009, 22 (11) :2697-2731
[6]  
Cangemi L, 1997, THESIS
[7]   Dynamic frictionless contact with adhesion [J].
Chau, O ;
Shillor, M ;
Sofonea, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (01) :32-47
[8]   Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion [J].
Chau, O ;
Fernández, JR ;
Shillor, M ;
Sofonea, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (02) :431-465
[9]   A dynamic unilateral contact problem with adhesion and friction in viscoelasticity [J].
Cocou, Marius ;
Schryve, Mathieu ;
Raous, Michel .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (04) :721-743
[10]   Existence results for unilateral quasistatic contact problems with friction and adhesion [J].
Cocu, M ;
Rocca, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05) :981-1001