Monotonicity of entropy and Fisher information: a quick proof via maximal correlation

被引:10
作者
Courtade, Thomas A. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
Entropy; Fisher information; maximal correlation;
D O I
10.4310/CIS.2016.v16.n2.a2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A simple proof is given for the monotonicity of entropy and Fisher information associated to sums of i.i.d. random variables. The proof relies on a characterization of maximal correlation for partial sums due to Dembo, Kagan and Shepp.
引用
收藏
页码:111 / 115
页数:5
相关论文
共 11 条
[1]  
BARRON AR, 1986, THE ANNALS OF PROBAB, P336
[2]   Remarks on the maximum correlation coefficient [J].
Dembo, A ;
Kagan, A ;
Shepp, LA .
BERNOULLI, 2001, 7 (02) :343-350
[3]   A CLASS OF STATISTICS WITH ASYMPTOTICALLY NORMAL DISTRIBUTION [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03) :293-325
[4]  
Johnson O., 2004, INFORM THEORY CENTRA, V8
[5]  
Madiman M., 2006, P 2006 IEEE INT S IN
[6]   Generalized entropy power inequalities and monotonicity properties of information [J].
Madiman, Mokshay ;
Barron, Andrew .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) :2317-2329
[7]  
Prakash P, 2015, PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO)
[8]   Shannon's monotonicity problem for free and classical entropy [J].
Shlyakhtenko, Dimitri ;
Schultz, Hanne .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (39) :15254-15258
[9]  
Stam A., 1959, INF CONTROL, V2, P101, DOI DOI 10.1016/S0019-9958(59)90348-1
[10]   Monotonic decrease of the non-Gaussianness of the sum of independent random variables:: A simple proof [J].
Tulino, Antonia M. ;
Verdu, Sergio .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) :4295-4297