SAMPLING FROM LOG-CONCAVE DISTRIBUTIONS

被引:39
作者
Frieze, Alan [1 ]
Kannan, Ravi [2 ,3 ]
Polson, Nick [4 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[2] BELLCORE, Morristown, NJ 07962 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
关键词
Sampling; random walk; log-concave functions;
D O I
10.1214/aoap/1177004973
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of sampling according to a distribution with log-concave density F over a convex body K subset of R-n. The sampling is dine using a biased random walk, and polynomial upper bounds on the time to get a sample point with disribution close to F.
引用
收藏
页码:812 / 837
页数:26
相关论文
共 10 条
[1]  
Anderson WN, 1985, LINEAR MULTILINEAR A, V18, P141, DOI DOI 10.1080/03081088508817681
[2]  
Applegate David, 1991, P 23 ANN ACM S THEOR, P156, DOI DOI 10.1145/103418.103439
[3]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[4]  
Fill J. A, 1991, ANN APPL PROBAB, P62
[5]  
KANNAN R., 1993, RANDOM SAMPLIN UNPUB
[6]  
Lovasz L., 1990, Proceedings. 31st Annual Symposium on Foundations of Computer Science (Cat. No.90CH2925-6), P346, DOI 10.1109/FSCS.1990.89553
[7]  
LOVASZ L., 1993, RANDOM STRU IN PRESS
[8]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[9]  
MIHAIL M, 1989, THESIS HARVARD U
[10]  
TIERNEY L., 1994, ANN STAT IN PRESS