A NUMERICAL-ANALYSIS OF AN ANISOTROPIC PHASE FIELD MODEL

被引:32
作者
CAGINALP, G [1 ]
LIN, JT [1 ]
机构
[1] WRIGHT STATE UNIV,DAYTON,OH 45435
关键词
D O I
10.1093/imamat/39.1.51
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:51 / 66
页数:16
相关论文
共 10 条
[1]   INVARIANT SETS AND EXISTENCE THEOREMS FOR SEMI-LINEAR PARABOLIC AND ELLIPTIC SYSTEMS [J].
AMANN, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) :432-467
[2]   THE ROLE OF MICROSCOPIC ANISOTROPY IN THE MACROSCOPIC BEHAVIOR OF A PHASE-BOUNDARY [J].
CAGINALP, G .
ANNALS OF PHYSICS, 1986, 172 (01) :136-155
[3]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[4]   HIGHER-ORDER PHASE FIELD MODELS AND DETAILED ANISOTROPY [J].
CAGINALP, G ;
FIFE, P .
PHYSICAL REVIEW B, 1986, 34 (07) :4940-4943
[5]  
CAGINALP G, 1984, LECTURE NOTES PHYSIC, V216, P216
[6]   POSITIVELY INVARIANT REGIONS FOR SYSTEMS OF NONLINEAR DIFFUSION EQUATIONS [J].
CHUEH, KN ;
CONLEY, CC ;
SMOLLER, JA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (02) :373-392
[7]  
HOFF D, 1978, SIAM J NUMER ANAL, V6, P1161
[8]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[9]  
LIN JT, 1987, IN PRESS SIAM J NUME
[10]  
Weinberger H., 1975, REND MAT 6, V8, P295