Stability analysis of delay seirepidemic model

被引:0
作者
Khan, Muhammad Altaf [1 ]
Bonyah, Ebenezer [2 ]
Ali, Shujaat [3 ]
Islam, Saeed [1 ]
Khan, Saima Naz [4 ]
机构
[1] Abdul Wali Khan Univ Mardan, Dept Math, Khyber Pakhtunkhwa, Pakistan
[2] Kumasi Polytech, Dept Math & Stat, POB 854, Kumasi, Ghana
[3] Islamia Coll Univ, Dept Math, Peshawar, Khyber Pakhtunk, Pakistan
[4] Abdul Wali Khan Univ Mardan, Dept Phys, Khyber Pakhtunkhwa, Pakistan
来源
INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES | 2016年 / 3卷 / 07期
关键词
SEIR epidemic model; Reproduction number; Global stability; Numerical results;
D O I
10.21833/ijaas.2016.07.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the analysis of SEIR epidemic model with time delay. We assumed that the susceptible individuals obey the logistic equation with saturated nonlinear incidence term with susceptible. The disease free equilibrium is stable locally asymptotically when R-0 < 1 and unstable equilibrium exists, when R-0 > 1. ForR(0) > 1, the endemic equilibrium is stable locally as well as globally. Finally, the numerical solutions for the theoretical results are presented. (C) 2016 The Authors. Published by IASE.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 21 条
[1]  
ANDERSON R M, 1991
[2]   Global asymptotic stability of an SIR epidemic model with distributed time delay [J].
Beretta, E ;
Hara, T ;
Ma, WB ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4107-4115
[3]  
Berezovsky F, 2005, MATH BIOSCI ENG, V2, P133
[4]   Global stability of an SIR epidemic model with information dependent vaccination [J].
Buonomo, Bruno ;
d'Onofrio, Alberto ;
Lacitignola, Deborah .
MATHEMATICAL BIOSCIENCES, 2008, 216 (01) :9-16
[5]   Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination [J].
d'Onofrio, A. ;
Manfredi, P. ;
Salinelli, E. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2007, 2 (01) :26-43
[6]   Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases [J].
d'Onofrio, Alberto ;
Manfredi, Piero ;
Salinelli, Ernesto .
THEORETICAL POPULATION BIOLOGY, 2007, 71 (03) :301-317
[7]   A model for vector transmitted diseases with saturation incidence [J].
Esteva, L ;
Matias, M .
JOURNAL OF BIOLOGICAL SYSTEMS, 2001, 9 (04) :235-245
[8]  
GREENHALGH D, 1992, IMA J MATH APPL MED, V9, P67
[9]   Dengue and dengue hemorrhagic fever [J].
Gubler, DJ .
CLINICAL MICROBIOLOGY REVIEWS, 1998, 11 (03) :480-+
[10]   An SIS epidemic model with variable population size and a delay [J].
Hethcote, HW ;
vandenDriessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1995, 34 (02) :177-194