KNOTTEDNESS IN RING POLYMERS

被引:190
作者
KONIARIS, K [1 ]
MUTHUKUMAR, M [1 ]
机构
[1] UNIV MASSACHUSETTS, DEPT POLYMER SCI & ENGN, AMHERST, MA 01003 USA
关键词
D O I
10.1103/PhysRevLett.66.2211
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We represent ring polymers in free space with the rod-bead model and show through unbiased computer simulations that the probability of observing a trivial self-entanglement (P) has a decreasing exponential dependence on the contour length (N) of the polymer, or that P = exp(-N/N0). The characteristic length (N0) varies by many orders of magnitude depending on chain flexibility and solvent quality. We also suggest that sufficiently large knots are always composite, not prime.
引用
收藏
页码:2211 / 2214
页数:4
相关论文
共 24 条
[1]   SEQUENCE OF INVARIANTS FOR KNOTS AND LINKS [J].
BALL, R ;
MEHTA, ML .
JOURNAL DE PHYSIQUE, 1981, 42 (09) :1193-1199
[2]  
BAUMGARTNER A, 1984, MONTE CARLO METHODS
[3]   MONTE-CARLO STUDY OF FREELY JOINTED RING POLYMERS .2. THE WRITHING NUMBER [J].
CHEN, YD .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (05) :2447-2453
[4]  
CLOIZEAUX JD, 1979, J PHYS-PARIS, V40, P665
[5]  
Crowell Richard H., 1977, INTRO KNOT THEORY
[6]  
de Gennes P.-G, 1979, SCALING CONCEPTS POL
[7]  
DEAN FB, 1985, J BIOL CHEM, V260, P4975
[8]   TIGHT KNOTS [J].
DEGENNES, PG .
MACROMOLECULES, 1984, 17 (04) :703-704
[9]  
Delbruck M., 1962, P S APPL MATH, V14, P55
[10]  
Doi M., 1988, THEORY POLYM DYNAMIC