EXACT-SOLUTIONS FOR A HIGHER-ORDER NONLINEAR SCHRODINGER-EQUATION

被引:76
作者
FLORJANCZYK, M
GAGNON, L
机构
[1] Centre D Optique, Photonique et Laser, Département de Physique, Université Laval, Ste-Foy
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 08期
关键词
D O I
10.1103/PhysRevA.41.4478
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We performed a systematic analysis of exact solutions for the higher-order nonlinear Schrödinger equation iX+TT=a12+a24+ia3 (2)T+(a4+ia5)(2)T that describes wave propagation in nonlinear dispersive media. The method consists of the determination of all transformations that reduce the equation to ordinary differential equations that are solved whenever possible. All obtained solutions fall into one of the following categories: bright or dark solitary waves, solitonic waves, regular and singular periodic waves, shock waves, accelerating waves, and self-similar solutions. They are expressed in terms of simple functions except for few cases given in terms of the less-known Painlevé transcendents. © 1990 The American Physical Society.
引用
收藏
页码:4478 / 4485
页数:8
相关论文
共 29 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[3]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[4]   SUPPRESSION OF THE SOLITON SELF-FREQUENCY SHIFT BY BANDWIDTH-LIMITED AMPLIFICATION [J].
BLOW, KJ ;
DORAN, NJ ;
WOOD, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (06) :1301-1304
[5]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[6]   OPTICALLY NONLINEAR-WAVES IN THIN-FILMS [J].
BOARDMAN, AD ;
EGAN, P .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (02) :319-324
[7]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[8]   OPTICAL-RESPONSE OF A NONLINEAR DIELECTRIC FILM [J].
CHEN, W ;
MILLS, DL .
PHYSICAL REVIEW B, 1987, 35 (02) :524-532
[9]   PAINLEVE ANALYSIS OF THE NONLINEAR SCHRODINGER FAMILY OF EQUATIONS [J].
CLARKSON, PA ;
COSGROVE, CM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (08) :2003-2024
[10]   A REVIEW OF THE MULTIPLE SCALE AND REDUCTIVE PERTURBATION-METHODS FOR DERIVING UNCOUPLED NONLINEAR EVOLUTION-EQUATIONS [J].
FRENZEN, CL ;
KEVORKIAN, J .
WAVE MOTION, 1985, 7 (01) :25-42