From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity

被引:9
作者
El-Nabulsi, Rami Ahmad [1 ]
机构
[1] Neijiang Normal Univ, Coll Math & Informat Sci, Neijiang 641112, Sichuan, Peoples R China
关键词
non-standard Lagrangians; general relativity; modified geodesic equations; discrete gravity; discrete spacetime; quantized cosmological constant;
D O I
10.3390/math3030727
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein's field equations yet the gravity is discretized and originated from spacetime discreteness. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.
引用
收藏
页码:727 / 745
页数:19
相关论文
共 80 条
[1]   CLASSICAL YANG-MILLS FIELD-THEORY WITH NONSTANDARD LAGRANGIANS [J].
ALEKSEEV, AI ;
ARBUZOV, BA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 59 (01) :372-378
[2]   CLASSICAL NON-ABELIAN SOLUTIONS FOR NONSTANDARD LAGRANGIANS [J].
ALEKSEEV, AI ;
VSHIVTSEV, AS ;
TATARINTSEV, AV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 77 (02) :1189-1197
[3]   Breaking diffeomorphism invariance and tests for the emergence of gravity [J].
Anber, Mohamed M. ;
Aydemir, Ufuk ;
Donoghue, John F. .
PHYSICAL REVIEW D, 2010, 81 (08)
[4]   Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration [J].
Anderson, JD ;
Laing, PA ;
Lau, EL ;
Liu, AS ;
Nieto, MM ;
Turyshev, SG .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :2858-2861
[5]  
Arbab A.I., 2013, SUD J SCI, V5, P21
[6]  
Arbab A.I., 2014, GEN RELATIV GRAVITY, V36, P2465
[7]   Massive gravitons in general relativity [J].
Argyris, J ;
Ciubotariu, C .
AUSTRALIAN JOURNAL OF PHYSICS, 1997, 50 (05) :879-891
[8]   QUANTUM MASS-SPECTRUM OF KERR BLACK-HOLE [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1974, 11 (09) :467-470
[9]   NEGATIVE MASS IN GENERAL RELATIVITY [J].
BONDI, H .
REVIEWS OF MODERN PHYSICS, 1957, 29 (03) :423-428
[10]  
Bowman GE., 2008, ESSENTIAL QUANTUM ME