SUPER-CONVERGENCE OF COLLOCATION METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 1ST KIND

被引:12
作者
BRUNNER, H
机构
[1] Department of Mathematics, Dalhousie University, Halifax, Nova Scotia
关键词
D O I
10.1007/BF02253135
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Collocation methods for solving first-kind Volterra equations in the space of piecewise polynomials possessing finite (jump) discontinuities at their knots and having degree m≧0 are known to have global order of convergence p=m+1. It is shown that a careful choice of the collocation points (characterized by the Lobatto points in (0, 1]) yields convergence of order (m+2) at the corresponding Legendre points. © 1979 Springer-Verlag.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 6 条
[1]  
BRUNNER H, 1977, MATH COMPUT, V31, P708, DOI 10.1090/S0025-5718-1977-0451794-6
[2]  
BRUNNER H, UNPUBLISHED
[3]  
BRUNNER H, 1975, NUMERICAL ANAL, P15
[4]  
Glasmacher W., 1966, IMPLIZITE RUNGE KUTT
[5]  
HOOG FD, 1973, NUMER MATH, V21, P22
[6]  
SMARZEWSKI R, 1976, ZASTOS MAT, V15, P117