FOURIER-ANALYSIS OF FINITE-ELEMENT PRECONDITIONED COLLOCATION SCHEMES

被引:16
作者
DEVILLE, MO
MUND, EH
机构
[1] NASA,LANGLEY RES CTR,INST COMP APPLICAT SCI & ENGN,HAMPTON,VA 23665
[2] UNIV LIBRE BRUXELLES,SERV METROL NUCL,B-1050 BRUSSELS,BELGIUM
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1992年 / 13卷 / 02期
关键词
FINITE ELEMENT; COLLOCATION METHOD; EIGENVALUE ANALYSIS;
D O I
10.1137/0913033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the transverse direction) of the two-dimensional Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
引用
收藏
页码:596 / 610
页数:15
相关论文
共 10 条
[1]  
Canuto C., 2012, SPECTRAL METHODS EVO
[2]  
Ciarlet P, 1979, FINITE ELEMENT METHO
[3]   TSCHEBYSCHEFF PSEUDOSPECTRAL SOLUTION OF THE STOKES EQUATIONS USING FINITE-ELEMENT PRECONDITIONING [J].
DEMARET, P ;
DEVILLE, MO .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 83 (02) :463-484
[4]   CHEBYSHEV COLLOCATION SOLUTIONS OF THE NAVIER-STOKES EQUATIONS USING MULTIDOMAIN DECOMPOSITION AND FINITE-ELEMENT PRECONDITIONING [J].
DEMARET, P ;
DEVILLE, MO .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 95 (02) :359-386
[5]   TSCHEBYSCHEFF PSEUDOSPECTRAL SOLUTION OF 2ND-ORDER ELLIPTIC-EQUATIONS WITH FINITE-ELEMENT PRECONDITIONING [J].
DEVILLE, M ;
MUND, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (03) :517-533
[6]   FINITE-ELEMENT PRECONDITIONING FOR PSEUDOSPECTRAL SOLUTIONS OF ELLIPTIC PROBLEMS [J].
DEVILLE, MO ;
MUND, EH .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (02) :311-342
[7]   TSCHEBYSCHEV 3-D SPECTRAL AND 2-D PSEUDOSPECTRAL SOLVERS FOR THE HELMHOLTZ-EQUATION [J].
HALDENWANG, P ;
LABROSSE, G ;
ABBOUDI, S ;
DEVILLE, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :115-128
[8]  
HEINRICH JC, 1979, FINITE ELEMENT METHO, P105
[9]  
Thomasset F., 1981, IMPLEMENTATION FINIT
[10]  
WOLFRAM S, 1983, SMP SYMBOLIC MANIPUL