UNIDIMENSIONAL THEORIES ARE SUPERSTABLE

被引:44
作者
HRUSHOVSKI, E [1 ]
机构
[1] PRINCETON UNIV,PRINCETON,NJ 08544
基金
美国国家科学基金会;
关键词
D O I
10.1016/0168-0072(90)90046-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first order theory T of power lambda is called unidemensional if any two lambda+-saturated models of T of the same (sufficiently large) cardinality are isomorphic. We prove here that such theories are superstable, solving a problem of Shelah. The proof involves an existence theorem and a definability theorem for definable groups in stable theories, and an analysis of their relation to regular types.
引用
收藏
页码:117 / 138
页数:22
相关论文
共 22 条
[1]  
Baldwin J. T., 1976, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V21, P267
[2]   STRONGLY MINIMAL SETS [J].
BALDWIN, JT ;
LACHLAN, AH .
JOURNAL OF SYMBOLIC LOGIC, 1971, 36 (01) :79-&
[3]  
BERLINE C, 1986, ANN PURE APPL LOGIC, P1
[4]   THE GEOMETRY OF WEAKLY MINIMAL TYPES [J].
BUECHLER, S .
JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (04) :1044-1053
[5]  
BUECHLER S, THEOREM UNIDIMENSION
[6]   KUEKER CONJECTURE FOR STABLE THEORIES [J].
HRUSHOVSKI, E .
JOURNAL OF SYMBOLIC LOGIC, 1989, 54 (01) :207-220
[7]   ALMOST ORTHOGONAL REGULAR TYPES [J].
HRUSHOVSKI, E .
ANNALS OF PURE AND APPLIED LOGIC, 1989, 45 (02) :139-155
[8]  
Hrushovski E., COUNTABLE UNIDIMENSI
[9]  
Hrushovski E., 1986, THESIS BERKELEY
[10]  
HRUSHOVSKI E, CLASSIFICATION THEOR, V1292