IS THERE A MINIMUM LENGTH IN D = 4 LATTICE QUANTUM-GRAVITY

被引:32
作者
GREENSITE, J [1 ]
机构
[1] NIELS BOHR INST,DK-2100 COPENHAGEN 0,DENMARK
关键词
D O I
10.1016/0370-2693(91)90781-K
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is argued that, as in string theory, a minimum length exists in D = 4 quantum gravity. The argument is based on a (naive) lattice regularization of tetrad gravity, where it appears that any formal reduction of the lattice spacing epsilon = x(n+1) - x(n) is countered by an increase in metric fluctuations. In D = 4 dimensions, these fluctuations prevent the average physical separation between neighboring lattice points from falling below a certain minimum, which is on the order of the Planck length.
引用
收藏
页码:375 / 380
页数:6
相关论文
共 26 条
[1]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[2]   HAMILTONIAN LATTICE GRAVITY .2. DISCRETE MOVING-FRAME FORMULATION [J].
BANDER, M .
PHYSICAL REVIEW D, 1988, 38 (04) :1056-1062
[3]   REGGE CALCULUS AS A LOCAL THEORY OF THE POINCARE GROUP [J].
CASELLE, M ;
DADDA, A ;
MAGNEA, L .
PHYSICS LETTERS B, 1989, 232 (04) :457-461
[4]   LATTICE FORMULATION OF GENERAL RELATIVITY [J].
DAS, A ;
KAKU, M ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1979, 81 (01) :11-14
[5]   A MODEL OF RANDOM SURFACES WITH NON-TRIVIAL CRITICAL-BEHAVIOR [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (04) :543-576
[6]   PATH INTEGRALS AND INDEFINITENESS OF GRAVITATIONAL ACTION [J].
GIBBONS, GW ;
HAWKING, SW ;
PERRY, MJ .
NUCLEAR PHYSICS B, 1978, 138 (01) :141-150
[7]   STABILIZING BOTTOMLESS ACTION THEORIES [J].
GREENSITE, J ;
HALPERN, MB .
NUCLEAR PHYSICS B, 1984, 242 (01) :167-188
[8]  
GREENSITE J, NBIHE9054 N BOHR PRE
[9]   SIMPLICIAL QUANTUM-GRAVITY WITH HIGHER DERIVATIVE TERMS - FORMALISM AND NUMERICAL RESULTS IN 4 DIMENSIONS [J].
HAMBER, HW ;
WILLIAMS, RM .
NUCLEAR PHYSICS B, 1986, 269 (3-4) :712-743
[10]   SOME QUANTUM FIELD-THEORY ASPECTS OF SUPERSPACE QUANTIZATION OF GENERAL RELATIVITY [J].
ISHAM, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 351 (1665) :209-232