Explicit limit cycles of a cubic polynomial differential systems

被引:0
作者
Bendjeddou, Ahmed [1 ]
Boukoucha, Rachid [2 ]
机构
[1] Univ Setif, Fac Sci, Dept Math, Setif 19000, Algeria
[2] Univ Bejaia, Fac Technol, Dept Technol, Bejaia 06000, Algeria
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2016年 / 61卷 / 01期
关键词
Planar polynomial differential system; algebraic limit cycle; non-algebraic limit cycle;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine sufficient conditions for a cubic polynomial differential systems of the form {x' = x + ax(3) + bx(2)y + cxy(2) + ny(3) y' = y + sx(3) + ux(2)y + vxy(2) + wy(3) where a, b, c, n, s, u, v, w are real constants, to possess an algebraic, non-algebraic limit cycles, explicitly given. Concrete examples exhibiting the applicability of our result is introduced.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 10 条
[1]   On the exact limit cycle for some class of planar differential systems [J].
Bendjeddou, A. ;
Cheurfa, R. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6) :491-498
[2]  
Bendjeddou A., 2011, ELECTRON J DIFFER EQ, V15, P1
[3]  
Benterki R., 2012, ELECTRON J DIFFER EQ, V2012, P1
[4]  
Dumortier F, 2006, UNIVERSITEXT, P1
[5]   Explicit non-algebraic limit cycles for polynomial systems [J].
Gasull, A. ;
Giacomini, H. ;
Torregrosa, J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) :448-457
[6]   On the nonexistence, existence and uniqueness of limit cycles [J].
Giacomini, H ;
Llibre, J ;
Viano, M .
NONLINEARITY, 1996, 9 (02) :501-516
[7]   Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations [J].
Giné, Jaume ;
Grau, Maite .
NONLINEARITY, 2006, 19 (08) :1939-1950
[8]   Algebraic limit cycles in polynomial systems of differential equations [J].
Llibre, Jaume ;
Zhao, Yulin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) :14207-14222
[9]   THE LIMIT-CYCLE OF THE VAN DER POL EQUATION IS NOT ALGEBRAIC [J].
ODANI, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 115 (01) :146-152
[10]  
Perko L., 2008, DIFFER EQUAT DYN SYS