We show that globally defined quasiconformal mappings of rigid Carnot groups are affine, but that globally defined contact mappings of rigid Carnot groups need not be quasiconformal, and a fortiori not affine.
机构:
Department of Mathematics, Ben-Gurion University of the Negev, Beer ShevaDepartment of Mathematics, Ben-Gurion University of the Negev, Beer Sheva
Gol’dshtein V.
Sevost’yanov E.
论文数: 0引用数: 0
h-index: 0
机构:
Zhytomyr Ivan Franko State University, Zhytomyr
Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yans’kDepartment of Mathematics, Ben-Gurion University of the Negev, Beer Sheva
Sevost’yanov E.
Ukhlov A.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Ben-Gurion University of the Negev, Beer ShevaDepartment of Mathematics, Ben-Gurion University of the Negev, Beer Sheva
机构:
John Paul II Catholic Univ Lublin, Fac Math & Nat Sci, PL-20950 Lublin, Poland
Inst Math & Informat Technol, State Sch Higher Educ Chelm, PL-22100 Chelm, PolandJohn Paul II Catholic Univ Lublin, Fac Math & Nat Sci, PL-20950 Lublin, Poland
Partyka, Dariusz
Sakan, Ken-ichi
论文数: 0引用数: 0
h-index: 0
机构:
Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 558, JapanJohn Paul II Catholic Univ Lublin, Fac Math & Nat Sci, PL-20950 Lublin, Poland
机构:
Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
Liu, Jinsong
Zhu, Jian-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China