Maximum Principle and Existence of Weak Solutions for Nonlinear System Involving Weighted (p, q)-Laplacian

被引:0
作者
Khafagy, Salah. A. [1 ]
Herzallah, Mohamed A. E. [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Cairo, Egypt
[2] Zagazig Univ, Fac Sci, Zagazig, Egypt
关键词
Maximum principle; Weak solution; p-Laplacian; Nonlinear system;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the necessary and sufficient conditions for the validity of the maximum principle for a nonlinear system involving weighted (p, q)-Laplacian operators on a bounded domain will be given. Then the existence of weak solutions for the same system will be proved by using the Browder theorem method.
引用
收藏
页码:353 / 364
页数:12
相关论文
共 30 条
  • [1] Positivity and negativity of solutions to a Schrodinger equation in RN
    Alziary, B
    Fleckinger-Pellé, J
    Takác, P
    [J]. POSITIVITY, 2001, 5 (04) : 359 - 382
  • [2] Alziary B., 1997, REV R ACAD CIENC EXA, V91, P47
  • [3] Bouchekif M., 1995, REV MAT APL, V16, P1
  • [4] de Figueiredo D., 1988, MAXIMUM PRINCIPLES L
  • [5] A MAXIMUM PRINCIPLE FOR AN ELLIPTIC SYSTEM AND APPLICATIONS TO SEMILINEAR PROBLEMS
    DEFIGUEIREDO, DG
    MITIDIERI, E
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) : 836 - 849
  • [6] Drabek P., 1997, QUASILINEAR ELLIPTIC
  • [7] EL-Zahrani E. A., 2006, ELECTRON J DIFFER EQ, V2006, P1
  • [8] FLECKINGER J, 1992, CR ACAD SCI I-MATH, V314, P665
  • [9] Fleckinger J., 1995, J DIFF INT EQNS, V8, P69
  • [10] Francu J., 1994, P SEM IND MATH MATH