THERMODYNAMICALLY EQUIVALENT HAMILTONIAN FOR SOME MANY-BODY PROBLEMS

被引:75
|
作者
WENTZEL, G
机构
来源
PHYSICAL REVIEW | 1960年 / 120卷 / 05期
关键词
D O I
10.1103/PhysRev.120.1572
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1572 / 1575
页数:4
相关论文
共 50 条
  • [21] Novel solvable many-body problems
    Oksana Bihun
    Francesco Calogero
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 190 - 212
  • [22] Conservative integrators for many-body problems
    Wan, Andy T. S.
    Bihlo, Alexander
    Nave, Jean-Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 466
  • [23] BRAIN AND PHYSICS OF MANY-BODY PROBLEMS
    RICCIARD.M
    UMEZAWA, H
    KYBERNETIK, 1967, 4 (02): : 44 - 44
  • [24] Many-body Hamiltonian with screening parameter and ionization energy
    Andrew das Arulsamy
    Pramana, 2010, 74 : 615 - 631
  • [25] Novel solvable many-body problems
    Bihun, Oksana
    Calogero, Francesco
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (02) : 190 - 212
  • [26] THE MANY-BODY NUCLEAR HAMILTONIAN FOR VANVLECK ENHANCED COMPOUNDS
    BOWDEN, GJ
    CLARK, RG
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (06): : 1089 - 1098
  • [27] CAUSAL FUNCTION IN MANY-BODY PROBLEMS
    MATSUMOTO, H
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1977, 25 (01): : 1 - 36
  • [28] VARIATIONAL METHODS FOR MANY-BODY PROBLEMS
    ROSENBERG, L
    TOLCHIN, S
    PHYSICAL REVIEW A, 1973, 8 (04) : 1702 - 1709
  • [29] NUCLEAR POTENTIAL IN MANY-BODY PROBLEMS
    OSADA, J
    TAKEDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1960, 24 (04): : 755 - 760
  • [30] Equivalent linear two-body equations for many-body systems
    Zubarev, AL
    Kim, YE
    PHYSICS LETTERS A, 1999, 263 (1-2) : 33 - 37