PATH INTEGRAL FORMULAS FOR HEAT KERNELS AND THEIR DERIVATIVES

被引:21
作者
NORRIS, JR
机构
[1] Statistical Laboratory, University of Cambridge, Cambridge, CB2 1SB
关键词
Mathematics Subject Classification: 58G32;
D O I
10.1007/BF01192562
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The heat kernel and its derivatives of a vector Laplacian on the sections of a bundle over a compact Riemannian manifold are expressed as products of the scalar heat kernel of the manifold and path integrals over the Brownian bridge. The small-time asymptotics of these integrals are computed.
引用
收藏
页码:525 / 541
页数:17
相关论文
共 9 条
[1]  
Bismut J.-M., 1984, PROGR MATH, V45
[2]  
BISMUT JM, 1981, PROBAB THEORY REL, V56, P469
[3]   FLOWS OF STOCHASTIC DYNAMICAL-SYSTEMS - THE FUNCTIONAL ANALYTIC APPROACH [J].
CARVERHILL, AP ;
ELWORTHY, KD .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :245-267
[4]  
Elworthy K.D., 1982, LONDON MATH SOC LECT, V70
[5]  
ELWORTHY KD, 1992, PROGR PROBAB, V27, P37
[6]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[7]  
NORRIS J, 1986, LECT NOTES MATH, V1204, P101
[8]  
NORRIS JR, COMPLETE DIFFERENTIA
[9]   ASYMPTOTIC PROBABILITIES AND DIFFERENTIAL EQUATIONS [J].
VARADHAN, SR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1966, 19 (03) :261-&