THE ANTIPODAL LAYERS PROBLEM

被引:15
作者
HURLBERT, G [1 ]
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
关键词
D O I
10.1016/0012-365X(94)90115-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n > 2k and [n] = {1,2,...,n), let the bipartite graph M(n,k) have vertices {A subset-of [n] parallel-to A\ = k or n - k} and edges {(A, B) \ A subset-of B). It has been conjectured that M2k+1,k (the middle two levels of the Boolean lattice l2k+1) is Hamiltonian, and we conjecture the same for arbitrary n. Here we show that the conjecture holds for n bigger than roughly k2, with k large enough. We also define a new product between ranked posets, giving rise to many new representations of M2k+1,k.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 18 条
[1]  
Aigner M., 1973, Journal of Combinatorial Theory, Series B, V14, P187, DOI 10.1016/0095-8956(73)90001-4
[2]   LONG CYCLES IN VERTEX-TRANSITIVE GRAPHS [J].
BABAI, L .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :301-304
[3]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO
[4]  
BONDY JA, 1976, GRAPH THEORY APPLICA, P54
[5]  
CORDOVA J, 1988, DISCRETE MATH, V72, P63
[6]  
DEJTER IJ, 1985, GRAPH THEORY APPL AL, P189
[7]   LEXICOGRAPHIC MATCHINGS CANNOT FORM HAMILTONIAN CYCLES [J].
DUFFUS, D ;
SANDS, B ;
WOODROW, R .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1988, 5 (02) :149-161
[8]  
DUFFUS D, IN PRESS J COMBIN B
[9]   MORE ODD GRAPH-THEORY [J].
GODSIL, CD .
DISCRETE MATHEMATICS, 1980, 32 (02) :205-207
[10]   UPDATING THE HAMILTONIAN-PROBLEM - A SURVEY [J].
GOULD, RJ .
JOURNAL OF GRAPH THEORY, 1991, 15 (02) :121-157