An electron microscopic study of cress (Lepidium sativum L.) roots treated with cyclopiazonic acid (CPA), an inhibitor of the Ca2+-ATPase in the endoplasmic reticulum (ER) has been carried out. Drastic changes in the endomembrane system of the secretory root cap cells were observed. After treatment with CPA dense spherical or elliptoidal aggregates of ER (diameter 2-4 mu m) were formed in addition to the randomly distributed ER cisternae characteristic for control cells. The formation of ER aggregates indicates that in spite of an inhibition of the Ca2+-ATPase in the ER by CPA, membrane synthesis in the ER continued. The ER aggregates are interpreted as a reservoir of ER membrane material newly synthesized during the 2h CPA-treatment. Hypertrophied Golgi cisternae and secretory vesicles, which are characteristic for secretory cells under control conditions, were completely absent. Additionally the shape of the Golgi stacks was flat and the diameter of the cisternae was shortened by about one third. These phenomena are indicative of an inactive state of the Golgi apparatus. The cellular organization of both other cell types of the root cap, meristematic cells and statocytes, was not visibly affected by CPA, both having a relatively low secretory activity. The formation of ER aggregates as well as the reduction of Golgi compartments are indications for the existence of a unidirectional transport of membrane material from the ER to the Golgi. It is suggested that the membrane traffic from the ER to the Golgi apparatus is regulated by the cytosolic and/or luminal calcium concentration in secretory cells of the root cap.