VORTICES IN HE-3 - AN ANALOG TO COSMIC STRINGS IN THE EARLY UNIVERSE

被引:7
作者
BRANDENBERGER, RH
机构
[1] Physics Department, Brown University, Providence
来源
PHYSICA B | 1992年 / 178卷 / 1-4期
关键词
D O I
10.1016/0921-4526(92)90177-T
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Cosmic strings are linear topological defects which are predicted in many "grand unified" models of particle physics, and which are used to construct a promising theory of large-scale structure formation. Cosmic strings share many features with vortices in helium 3. Similarities and differences are reviewed in this paper. A couple of experiments with helium 3 vortices which would yield important information for cosmology are suggested.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 30 条
  • [1] EVOLUTION OF COSMIC STRINGS
    ALBRECHT, A
    TUROK, N
    [J]. PHYSICAL REVIEW LETTERS, 1985, 54 (16) : 1868 - 1871
  • [2] EVOLUTION OF COSMIC STRING NETWORKS
    ALBRECHT, A
    TUROK, N
    [J]. PHYSICAL REVIEW D, 1989, 40 (04): : 973 - 1001
  • [3] COSMIC-STRING EVOLUTION - A NUMERICAL-SIMULATION
    ALLEN, B
    SHELLARD, EPS
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (02) : 119 - 122
  • [4] EVIDENCE FOR A SCALING SOLUTION IN COSMIC-STRING EVOLUTION
    BENNETT, DP
    BOUCHET, FR
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (04) : 257 - 260
  • [5] BARYOGENESIS FROM COLLAPSING TOPOLOGICAL DEFECTS
    BRANDENBERGER, RH
    DAVIS, AC
    HINDMARSH, M
    [J]. PHYSICS LETTERS B, 1991, 263 (02) : 239 - 244
  • [6] COSMIC STRINGS AND THE LARGE-SCALE STRUCTURE OF THE UNIVERSE
    BRANDENBERGER, RH
    [J]. PHYSICA SCRIPTA, 1991, T36 : 114 - 126
  • [7] A SLICE OF THE UNIVERSE
    DELAPPARENT, V
    GELLER, MJ
    HUCHRA, JP
    [J]. ASTROPHYSICAL JOURNAL, 1986, 302 (01) : L1 - L5
  • [8] FOERSTER D, 1974, NUCL PHYS B, V81, P84
  • [9] INFLATIONARY UNIVERSE - A POSSIBLE SOLUTION TO THE HORIZON AND FLATNESS PROBLEMS
    GUTH, AH
    [J]. PHYSICAL REVIEW D, 1981, 23 (02) : 347 - 356
  • [10] TOPOLOGY OF COSMIC DOMAINS AND STRINGS
    KIBBLE, TWB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (08): : 1387 - 1398