Data on dynamic study of cytoophidia in Saccharomyces cerevisiae

被引:7
|
作者
Li, Hui [1 ,2 ]
Huang, Yong [1 ,3 ]
Wang, Peng-Ye [2 ]
Ye, Fangfu [2 ]
Liu, Ji-Long [1 ]
机构
[1] Univ Oxford, Dept Phys Anat & Genet, Med Res Council, Funct Genom Unit, Oxford OX1 3PT, England
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Key Lab Soft Matter Phys, Beijing 100190, Peoples R China
[3] Southwest Univ, Coll Plant Protect, Key Lab Entomol & Pest Control Engn, Chongqing 400715, Peoples R China
来源
DATA IN BRIEF | 2016年 / 8卷
基金
中国国家自然科学基金; 英国医学研究理事会;
关键词
Saccharomycescerevisiae; CTP synthase; Cytoophidium; Metabolism; Filamentation;
D O I
10.1016/j.dib.2016.05.015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The data in this paper are related to the research article entitled "Filamentation of metabolic enzymes in Saccharomyces cerevisiae" Q.J. Shen et al. (2016) [1]. Cytoophidia are filamentous structures discovered in fruit flies (http://dx.doi.org/10.1016/S1673-8527(09)60046-1) J.L. Liu (2010) [2], bacteria (http://dx.doi.org/10.1038/ncb2087) M. Ingerson-Mahar et al. (2010) [3], yeast (http://dx.doi.org/10.1083/jcb.201003001; http://dx.doi.org/10.1242/bio.20149613) C. Noree et al. (2010) and J. Zhang, L. Hulme, J.L. Liu (2014) [4], [5] and human cells (http://dx.doi.org/10.1371/journal.pone.0029690; http://dx.doi.org/10.1016/j.jgg.2011.08.004) K. Chen et al. (2011) and W.C. Carcamo et al. (2011) ([6], [7]. However, there is little research on the motility of the cytoophidia. Here we selected cytoophidia formed by 6 filament-forming proteins in the budding yeast S. cerevisiae, and performed living-cell imaging of cells expressing the proteins fused with GFP. The dynamic features of the six types of cytoophidia were analyzed. In the data, both raw movies and analysed results of the dynamics of cytoophidia are presented. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:40 / 44
页数:5
相关论文
共 50 条
  • [21] Bioreduction of ethyl 3-oxobutyrate by Saccharomyces cerevisiae:: A metabolic in vivo study
    Perles, Carlos E.
    Moran, Paulo J. S.
    Volpe, Pedro L. O.
    JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2008, 52-53 : 82 - 87
  • [22] Engineering and transcriptome study of Saccharomyces cerevisiae to produce ginsenoside compound K by glycerol
    Zhang, Chuanbo
    Tian, Jinping
    Zhang, Jiale
    Liu, Ruixia
    Zhao, Xiaomeng
    Lu, Wenyu
    BIOTECHNOLOGY JOURNAL, 2024, 19 (02)
  • [23] A Physiogenomic Study of the Tolerance of Saccharomyces cerevisiae to Isoamyl Alcohol
    Song, Jialin
    Wang, Yu
    Xu, Hengyuan
    Liu, Jinshang
    Wang, Jianping
    Zhang, Haojun
    Nie, Cong
    FERMENTATION-BASEL, 2024, 10 (01):
  • [24] Calorimetric study on the interaction of alcohols with Saccharomyces cerevisiae (Sc).
    Silva, EA
    Volpe, PLO
    QUIMICA NOVA, 1999, 22 (03): : 309 - 311
  • [25] Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae
    Bowen, WR
    Lovitt, RW
    Wright, CJ
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 237 (01) : 54 - 61
  • [26] Quiescence in Saccharomyces cerevisiae
    Breeden, Linda L.
    Tsukiyama, Toshio
    ANNUAL REVIEW OF GENETICS, 2022, 56 : 253 - 278
  • [27] Saccharomyces cerevisiae infections
    Goebel, Cristine Souza
    Oliveira, Flavio de Mattos
    Sever, Luiz Carlos
    REVISTA IBEROAMERICANA DE MICOLOGIA, 2013, 30 (03): : 205 - 208
  • [28] The Saccharomyces cerevisiae kinetochore
    Lechner, J
    Ortiz, J
    FEBS LETTERS, 1996, 389 (01) : 70 - 74
  • [29] Flocculation of Saccharomyces cerevisiae
    Jin, YL
    Speers, RA
    FOOD RESEARCH INTERNATIONAL, 1998, 31 (6-7) : 421 - 440
  • [30] Production of (R)-citramalate by engineered Saccharomyces cerevisiae
    Mitsui, Ryosuke
    Kondo, Akihiko
    Shirai, Tomokazu
    METABOLIC ENGINEERING COMMUNICATIONS, 2024, 19